Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway
Photoperiodism allows organisms to measure daylength, or external photoperiod, and to anticipate coming seasons. Daylength measurement requires the integration of light signal and temporal information by the circadian clock. In the long-day plant Arabidopsis thaliana, CONSTANS (CO) plays a crucial role in integrating the circadian rhythm and environmental light signals into the photoperiodic flowering pathway. Nevertheless, the molecular mechanism by which the circadian clock modulates the cyclic expression profile of CO is poorly understood. Here, we first showed that the clock-associated genes PSEUDO-RESPONSE REGULATOR (PRR) PRR9, PRR7 and PRR5 are involved in activation of CO expression during the daytime. Then, extensive genetic studies using CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) double mutants (cca1/lhy) and prr7/prr5 were conducted. The results suggested that PRR genes act coordinately in a manner parallel with and antagonistic to CCA/LHY, upstream of the canonical CO-FLOWERING LOCUS T (FT) photoperiodic flowering pathway. Finally, we provided evidence to propose a model, in which CCA1/LHY repress CO through GIGANTEA (GI), while PRR9, PRR7 and PRR5 activate CO predominantly by repressing CYCLING DOF FACTOR1 (CDF1) encoding a DNA-binding transcriptional repressor.
SEEK ID: https://fairdomhub.org/publications/308
PubMed ID: 17504813
Projects: Millar group
Publication type: Not specified
Journal: Plant Cell Physiol
Citation: Plant Cell Physiol. 2007 Jun;48(6):822-32. Epub 2007 May 15.
Date Published: 17th May 2007
Registered Mode: Not specified
Views: 4283
Created: 4th Feb 2017 at 13:26
Last updated: 8th Dec 2022 at 17:26
This item has not yet been tagged.
None