Structural basis for the enhanced activity of cyclic antimicrobial peptides: The case of BPC194

Abstract:

We report the molecular basis for the differences in activity of cyclic and linear antimicrobial peptides. We iteratively performed atomistic molecular dynamics simulations and biophysical measurements to probe the interaction of a cyclic antimicrobial peptide and its inactive linear analogue with model membranes. We establish that, relative to the linear peptide, the cyclic one binds stronger to negatively charged membranes. We show that only the cyclic peptide folds at the membrane interface and adopts a beta-sheet structure characterised by two turns. Subsequently, the cyclic peptide penetrates deeper into the bilayer while the linear peptide remains essentially at the surface. Finally, based on our comparative study, we propose a model characterising the mode of action of cyclic antimicrobial peptides. The results provide a chemical rationale for enhanced activity in certain cyclic antimicrobial peptides and can be used as a guideline for design of novel antimicrobial peptides.

SEEK ID: https://fairdomhub.org/publications/123

PubMed ID: 21586269

Projects: KOSMOBAC

Publication type: Not specified

Citation:

Date Published: 19th May 2011

Registered Mode: Not specified

Authors: , Gemma Moiset, Anna D Cirac, Lidia Feliu, Eduard Bardají, Marta Planas, Durba Sengupta, Siewert J Marrink,

help Submitter
Activity

Views: 4155

Created: 1st Jun 2011 at 10:39

help Tags

This item has not yet been tagged.

help Attributions

None

Powered by
(v.1.12.1)
Copyright © 2008 - 2022 The University of Manchester and HITS gGmbH

By continuing to use this site you agree to the use of cookies