The effect of osmotic stress on the intracellular diffusion of proteins in Escherichia coli was studied, using a pulsed version of fluorescence recovery after photo-bleaching, pulsed-FRAP. This method employs sequences of laser pulses which only partly bleach the fluorophores in a cell. Because the cell size and geometry are taken into account, pulsed-FRAP enables to measure diffusion in very small cells of different shapes. We found that upon an osmotic upshock from 0.15 to 0.6 Osm, imposed by NaCl or sorbitol, the apparent intracellular diffusion (D) of mobile green fluorescent protein (GFP) decreased from 3.2 to 0.4 microm(2) s(-1), whereas the membrane permeable glycerol had no effect. Exposing E. coli cells to higher osmolalities (> 0.6 Osm) led to compartmentalization of the GFP into discrete pools, from where the GFP could not escape. Although free diffusion through the cell was hindered, the mobility of GFP in these pools was still relatively high (D approximately 0.4 microm(2) s(-1)). The presence of osmoprotectants restored the effect of osmotic stress on the protein mobility and apparent compartmentalization. Also, lowering the osmolality from 0.6 Osm back to 0.15 Osm restored the mobility of GFP. The implications of these findings in terms of heterogeneities and diffusive barriers inside the cell are discussed.
SEEK ID: https://fairdomhub.org/publications/121
PubMed ID: 17462029
Projects: KOSMOBAC
Publication type: Not specified
Journal: Mol. Microbiol.
Citation:
Date Published: 28th Apr 2007
Registered Mode: Not specified
Views: 4822
Created: 31st May 2011 at 23:31
Last updated: 8th Dec 2022 at 17:26
This item has not yet been tagged.
None