Publications

What is a Publication?
5 Publications visible to you, out of a total of 5

Abstract (Expand)

How an organism copes with chemicals is largely determined by the genes and proteins that collectively function to defend against, detoxify and eliminate chemical stressors. This integrative network includes receptors and transcription factors, biotransformation enzymes, transporters, antioxidants, and metal- and heat-responsive genes, and is collectively known as the chemical defensome. Teleost fish is the largest group of vertebrate species and can provide valuable insights into the evolution and functional diversity of defensome genes. We have previously shown that the xenosensing pregnane x receptor (pxr, nr1i2) is lost in many teleost species, including Atlantic cod (Gadus morhua) and three-spined stickleback (Gasterosteus aculeatus), but it is not known if compensatory mechanisms or signaling pathways have evolved in its absence. In this study, we compared the genes comprising the chemical defensome of five fish species that span the teleosteii evolutionary branch often used as model species in toxicological studies and environmental monitoring programs: zebrafish (Danio rerio), medaka (Oryzias latipes), Atlantic killifish (Fundulus heteroclitus), Atlantic cod, and three-spined stickleback. Genome mining revealed evolved differences in the number and composition of defensome genes that can have implication for how these species sense and respond to environmental pollutants, but we did not observe any candidates of compensatory mechanisms or pathways in cod and stickleback in the absence of pxr. The results indicate that knowledge regarding the diversity and function of the defensome will be important for toxicological testing and risk assessment studies.

Authors: Marta Eide, Xiaokang Zhang, Odd André Karlsen, Jared V. Goldstone, John Stegeman, Inge Jonassen, Anders Goksøyr

Date Published: 1st Dec 2021

Publication Type: Journal

Abstract (Expand)

The availability of genome sequences, annotations, and knowledge of the biochemistry underlying metabolic transformations has led to the generation of metabolic network reconstructions for a wide range of organisms in bacteria, archaea, and eukaryotes. When modeled using mathematical representations, a reconstruction can simulate underlying genotype-phenotype relationships. Accordingly, genome-scale metabolic models (GEMs) can be used to predict the response of organisms to genetic and environmental variations. A bottom-up reconstruction procedure typically starts by generating a draft model from existing annotation data on a target organism. For model species, this part of the process can be straightforward, due to the abundant organism-specific biochemical data. However, the process becomes complicated for non-model less-annotated species. In this paper, we present a draft liver reconstruction, ReCodLiver0.9, of Atlantic cod (Gadus morhua), a non-model teleost fish, as a practicable guide for cases with comparably few resources. Although the reconstruction is considered a draft version, we show that it already has utility in elucidating metabolic response mechanisms to environmental toxicants by mapping gene expression data of exposure experiments to the resulting model.

Authors: Eileen Marie Hanna, Xiaokang Zhang, Marta Eide, Shirin Fallahi, Tomasz Furmanek, Fekadu Yadetie, Daniel Craig Zielinski, Anders Goksøyr, Inge Jonassen

Date Published: 26th Nov 2020

Publication Type: Journal

Abstract (Expand)

Screening has revealed that modern-day feeds used in Atlantic salmon aquaculture might contain trace amounts of agricultural pesticides. To reach slaughter size, salmon are produced in open net pens in the sea. Uneaten feed pellets and undigested feces deposited beneath the net pens represent a source of contamination for marine organisms. To examine the impacts of long-term and continuous dietary exposure to an organophosphorus pesticide found in Atlantic salmon feed, we fed juvenile Atlantic cod (Gadus morhua), an abundant species around North Atlantic fish farms, three concentrations (0.5, 4.2, and 23.2 mg/kg) of chlorpyrifos-methyl (CPM) for 30 days. Endpoints included liver and bile bioaccumulation, liver transcriptomics and metabolomics, as well as plasma cholinesterase activity, cortisol, liver 7-ethoxyresor-ufin-O-deethylase activity, and hypoxia tolerance. The results show that Atlantic cod can accumulate relatively high levels of CPM in liver after continuous exposure, which is then metabolized and excreted via the bile. All three exposure concentrations lead to significant inhibition of plasma cholinesterase activity, the primary target of CPM. Transcriptomics profiling pointed to effects on cholesterol and steroid biosynthesis. Metabolite profiling revealed that CPM induced responses reflecting detoxification by glutathione-S-transferase, inhibition of monoacylglycerol lipase, potential inhibition of carboxylesterase, and increased demand for ATP, followed by secondary inflammatory responses. A gradual hypoxia challenge test showed that all groups of exposed fish were less tolerant to low oxygen saturation than the controls. In conclusion, this study suggests that wild fish continuously feeding on leftover pellets near fish farms over time may be vulnerable to organophosphorus pesticides.

Authors: Pål A. Olsvik, Anett Kristin Larsen, Marc H. G. Berntssen, Anders Goksøyr, Odd André Karlsen, Fekadu Yadetie, Monica Sanden, Torstein Kristensen

Date Published: 26th Sep 2019

Publication Type: Journal

Abstract (Expand)

The dopaminergic effect of PAH and PFAS mixtures, prepared according to environmentally relevant concentrations, has been studied in juvenile female Atlantic cod ( Gadus morhua). Benzo[a]pyrene, dibenzothiophene, fluorene, naphthalene, phenanthrene, and pyrene were used to prepare a PAH mixture, while PFNA, PFOA, PFOS, and PFTrA were used to prepare a PFAS mixture. Cod were injected intraperitoneally twice, with either a low (1x) or high (20x) dose of each compound mixture or their combinations. After 2 weeks of exposure, levels of plasma 17beta-estradiol (E2) were significantly elevated in high PAH/high PFAS treated group. Brain dopamine/metabolite ratios (DOPAC/dopamine and HVA+DOPAC/dopamine) changed with E2 plasma levels, except for high PAH/low PFAS and low PAH/high PFAS treated groups. On the transcript levels, th mRNA inversely correlated with dopamine/metabolite ratios and gnrh2 mRNA levels. Respective decreases and increases of drd1 and drd2a after exposure to the high PAH dose were observed. Specifically, high PFAS exposure decreased both drds, leading to high plasma E2 concentrations. Other studied end points suggest that these compounds, at different doses and combinations, have different toxicity threshold and modes of action. These effects indicate potential alterations in the feedback signaling processes within the dopaminergic pathway by these contaminant mixtures.

Authors: E. A. Khan, L. B. Bertotto, K. Dale, R. Lille-Langoy, F. Yadetie, O. A. Karlsen, A. Goksoyr, D. Schlenk, A. Arukwe

Date Published: 18th Jun 2019

Publication Type: Not specified

Abstract (Expand)

The aim of this study was to assess whether fish in Kollevag, a sheltered bay on the western coast of Norway, previously utilized as a waste disposal site, could be affected by environmental contaminants leaking from the waste. Farmed, juvenile Atlantic cod (Gadus morhua) were caged for six weeks at three different locations in Kollevag bay and at one reference location. Sediments and cod samples (bile and liver) were analyzed for polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), brominated flame retardants (BFRs), per-and polyfluoroalkyl substances (PFASs) and polycyclic aromatic hydrocarbon (PAH) metabolites, revealing a contamination gradient at the four stations. Furthermore, hepatosomatic index (HSI) and Fulton's condition factor (CF) were significantly lower in cod caged closest to the disposal site. Levels and activities of biomarker proteins, such as vitellogenin (Vtg), metallothionein (Mt), and biotransformation and oxidative stress enzymes, including cytochrome P450 1a and 3a (Cyp1a, Cyp3a), glutathione s-transferase (Gst) and catalase (Cat), were quantified in blood plasma and liver tissue. Hepatic Cat and Gst activities were significantly reduced in cod caged at the innermost stations in Kollevag, indicating modulation of oxidative stress responses. However, these results contrasted with reduced hepatic lipid peroxidation. Significant increases in transcript levels were observed for genes involved in lipid metabolism (fasn and acly) in cod liver, while transcript levels of ovarian steroidogenic enzyme genes such as p450scc, cyp19, 3beta-hsd and 20beta-hsd showed significant station-dependent increases. Cyp1a and Vtg protein levels were however not significantly altered in cod caged in Kollevag. Plasma levels of estradiol (E2) and testosterone (T) were determined by enzyme immunoassay (EIA) and showed elevated E2 levels, but only at the innermost station. We conclude that the bay of Kollevag did not fullfill adequate environmental condition based on environmental quality standards (EQSs) for chemicals in coastal waters. Following a six weeks caging period, environmental contaminants accumulated in cod tissues and effects were observed on biomarker responses, especially those involved in reproductive processes in cod ovary.

Authors: K. Dale, M. B. Muller, Z. Tairova, E. A. Khan, K. Hatlen, M. Grung, F. Yadetie, R. Lille-Langoy, N. Blaser, H. J. Skaug, J. L. Lyche, A. Arukwe, K. Hylland, O. A. Karlsen, A. Goksoyr

Date Published: 26th Feb 2019

Publication Type: Not specified

Powered by
(v.1.15.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH