Publications

What is a Publication?
6 Publications visible to you, out of a total of 6

Abstract (Expand)

Background The stressosome is a bacterial signalling complex that responds to environmental changes by initiating a protein partner switching cascade, which leads to the release of the alternative sigma factor, sigmaB. Stress perception increases the phosphorylation of the stressosome sensor protein, RsbR, and the scaffold protein, RsbS, by the protein kinase RsbT. Subsequent dissociation of RsbT from the stressosome activates the sigmaB cascade. However, the sequence of physical events that occur in the stressosome during signal transduction is insufficiently understood. Results Here, we use computational modelling to correlate the structure of the stressosome with the efficiency of the phosphorylation reactions that occur upon activation by stress. In our model, the phosphorylation of any stressosome protein is dependent upon its nearest neighbours and their phosphorylation status. We compare different hypotheses about stressosome activation and find that only the model representing the allosteric activation of the kinase RsbT, by phosphorylated RsbR, qualitatively reproduces the experimental data. Conclusions Our simulations and the associated analysis of published data support the following hypotheses: (i) a simple Boolean model is capable of reproducing stressosome dynamics, (ii) different stressors induce identical stressosome activation patterns, and we also confirm that (i) phosphorylated RsbR activates RsbT, and (ii) the main purpose of RsbX is to dephosphorylate RsbS-P.

Authors: , , Jon Marles-Wright, ,

Date Published: 2013

Publication Type: Not specified

Abstract (Expand)

RNA processing and degradation are key processes in the control of transcript accumulation and thus in the control of gene expression. In Escherichia coli, the underlying mechanisms and components of RNA decay are well characterized. By contrast, Gram-positive bacteria do not possess several important players of E. coli RNA degradation, most notably the essential enzyme RNase E. Recent research on the model Gram-positive organism, Bacillus subtilis, has identified the essential RNases J1 and Y as crucial enzymes in RNA degradation. While RNase J1 is the first bacterial exoribonuclease with 5'-to-3' processivity, RNase Y is the founding member of a novel class of endoribonucleases. Both RNase J1 and RNase Y have a broad impact on the stability of B. subtilis mRNAs; a depletion of either enzyme affects more than 25% of all mRNAs. RNases J1 and Y as well as RNase J2, the polynucleotide phosphorylase PNPase, the RNA helicase CshA and the glycolytic enzymes enolase and phosphofructokinase have been proposed to form a complex, the RNA degradosome of B. subtilis. This review presents a model, based on recent published data, of RNA degradation in B. subtilis. Degradation is initiated by RNase Y-dependent endonucleolytic cleavage, followed by processive exoribonucleolysis of the generated fragments both in 3'-to-5' and in 5'-to-3' directions. The implications of these findings for pathogenic Gram-positive bacteria are also discussed.

Authors: Martin Lehnik-Habrink, , ,

Date Published: 8th May 2012

Publication Type: Not specified

Abstract (Expand)

Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional conditions that the organism might encounter in nature. We comprehensively mapped transcription units (TUs) and grouped 2935 promoters into regulons controlled by various RNA polymerase sigma factors, accounting for ~66% of the observed variance in transcriptional activity. This global classification of promoters and detailed description of TUs revealed that a large proportion of the detected antisense RNAs arose from potentially spurious transcription initiation by alternative sigma factors and from imperfect control of transcription termination.

Authors: Pierre Nicolas, , Etienne Dervyn, Tatiana Rochat, Aurélie Leduc, Nathalie Pigeonneau, Elena Bidnenko, Elodie Marchadier, Mark Hoebeke, Stéphane Aymerich, Dörte Becher, Paola Bisicchia, Eric Botella, Olivier Delumeau, Geoff Doherty, Emma L Denham, Mark J Fogg, Vincent Fromion, Anne Goelzer, Annette Hansen, Elisabeth Härtig, , Georg Homuth, Hanne Jarmer, Matthieu Jules, Edda Klipp, Ludovic Le Chat, François Lecointe, , Wolfram Liebermeister, Anika March, , , David Noone, Susanne Pohl, Bernd Rinn, Frank Rügheimer, , Franck Samson, Marc Schaffer, Benno Schwikowski, , , Thomas Wiegert, Kevin M Devine, Anthony J Wilkinson, , , , Philippe Bessières, Philippe Noirot

Date Published: 3rd Mar 2012

Publication Type: Not specified

Abstract (Expand)

The RNA degradosome is a multiprotein macromolecular complex that is involved in the degradation of messenger RNA in bacteria. The composition of this complex has been found to display a high degree of evolutionary divergence, which may reflect the adaptation of species to different environments. Recently, a degradosome-like complex identified in Bacillus subtilis was found to be distinct from those found in proteobacteria, the degradosomes of which are assembled around the unstructured C-terminus of ribonuclease E, a protein not present in B. subtilis. In this report, we have investigated in vitro the binary interactions between degradosome components and have characterized interactions between glycolytic enzymes, RNA-degrading enzymes, and those that appear to link these two cellular processes. The crystal structures of the glycolytic enzymes phosphofructokinase and enolase are presented and discussed in relation to their roles in the mediation of complex protein assemblies. Taken together, these data provide valuable insights into the structure and dynamics of the RNA degradosome, a fascinating and complex macromolecular assembly that links RNA degradation with central carbon metabolism.

Authors: , Lorraine Hewitt, Cecilia Rodrigues, Alexandra S Solovyova, ,

Date Published: 16th Dec 2011

Publication Type: Not specified

Abstract (Expand)

The control of mRNA stability is an important component of regulation in bacteria. Processing and degradation of mRNAs are initiated by an endonucleolytic attack, and the cleavage products are processively degraded by exoribonucleases. In many bacteria, these RNases, as well as RNA helicases and other proteins, are organized in a protein complex called the RNA degradosome. In Escherichia coli, the RNA degradosome is assembled around the essential endoribonuclease E. In Bacillus subtilis, the recently discovered essential endoribonuclease RNase Y is involved in the initiation of RNA degradation. Moreover, RNase Y interacts with other RNases, the RNA helicase CshA, and the glycolytic enzymes enolase and phosphofructokinase in a degradosome-like complex. In this work, we have studied the domain organization of RNase Y and the contribution of the domains to protein-protein interactions. We provide evidence for the physical interaction between RNase Y and the degradosome partners in vivo. We present experimental and bioinformatic data which indicate that the RNase Y contains significant regions of intrinsic disorder and discuss the possible functional implications of this finding. The localization of RNase Y in the membrane is essential both for the viability of B. subtilis and for all interactions that involve RNase Y. The results presented in this study provide novel evidence for the idea that RNase Y is the functional equivalent of RNase E, even though the two enzymes do not share any sequence similarity.

Authors: Martin Lehnik-Habrink, , Fabian M Rothe, Alexandra S Solovyova, Cecilia Rodrigues, Christina Herzberg, Fabian M Commichau, ,

Date Published: 29th Jul 2011

Publication Type: Not specified

Abstract (Expand)

Any signal transduction requires communication between a sensory component and an effector. Some enzymes engage in signal perception and transduction, as well as in catalysis, and these proteins are known as "trigger" enzymes. In this report, we detail the trigger properties of RocG, the glutamate dehydrogenase of Bacillus subtilis. RocG not only deaminates the key metabolite glutamate to form alpha-ketoglutarate but also interacts directly with GltC, a LysR-type transcription factor that regulates glutamate biosynthesis from alpha-ketoglutarate, thus linking the two metabolic pathways. We have isolated mutants of RocG that separate the two functions. Several mutations resulted in permanent inactivation of GltC as long as a source of glutamate was present. These RocG proteins have lost their ability to catabolize glutamate due to a strongly reduced affinity for glutamate. The second class of mutants is exemplified by the replacement of aspartate residue 122 by asparagine. This mutant protein has retained enzymatic activity but has lost the ability to control the activity of GltC. Crystal structures of glutamate dehydrogenases that permit a molecular explanation of the properties of the various mutants are presented. Specifically, we may propose that D122N replacement affects the surface of RocG. Our data provide evidence for a correlation between the enzymatic activity of RocG and its ability to inactivate GltC, and thus give insights into the mechanism that couples the enzymatic activity of a trigger enzyme to its regulatory function.

Authors: Katrin Gunka, , Fabian M Commichau, Christina Herzberg, Cecilia Rodrigues, Lorraine Hewitt, , Jörg Stülke

Date Published: 22nd Feb 2010

Publication Type: Not specified

Powered by
(v.1.15.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH