Publications

What is a Publication?
4 Publications visible to you, out of a total of 4

Abstract (Expand)

BACKGROUND: During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples. RESULTS: Surprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis. CONCLUSIONS: Our study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological setting.

Authors: , Florian Battke, Alexander Herbig, , , , , , , , , Edward R Morrissey, Miguel A Juarez-Hermosillo, , Merle Nentwich, , Mudassar Iqbal, , , , , , , , Michael Bonin, , , , , , , , , ,

Date Published: 28th May 2009

Publication Type: Not specified

Abstract (Expand)

Bacterial growth requires equilibrated concentration of C, N and P sources. This work shows a phosphate control over the nitrogen metabolism in the model actinomycete Streptomyces coelicolor. Phosphate control of metabolism in Streptomyces is exerted by the two component system PhoR-PhoP. The response regulator PhoP binds to well-known PHO boxes composed of direct repeat units (DRus). PhoP binds to the glnR promoter, encoding the major nitrogen regulator as shown by EMSA studies, but not to the glnRII promoter under identical experimental conditions. PhoP also binds to the promoters of glnA and glnII encoding two glutamine synthetases, and to the promoter of the amtB-glnK-glnD operon, encoding an ammonium transporter and two putative nitrogen sensing/regulatory proteins. Footprinting analyses revealed that the PhoP-binding sequence overlaps the GlnR boxes in both glnA and glnII. 'Information theory' quantitative analyses of base conservation allowed us to establish the structure of the PhoP-binding regions in the glnR, glnA, glnII and amtB genes. Expression studies using luxAB as reporter showed that PhoP represses the above mentioned nitrogen metabolism genes. A mutant deleted in PhoP showed increased expression of the nitrogen metabolism genes. The possible conservation of phosphate control over nitrogen metabolism in other microorganisms is discussed.

Authors: , Alberto Sola-Landa, Kristian Apel, Fernando Santos-Beneit,

Date Published: 24th Mar 2009

Publication Type: Not specified

Abstract (Expand)

The regulatory proteins AfsR and PhoP control expression of the biosynthesis of actinorhodin and undecylprodigiosin in Streptomyces coelicolor. Electrophoretic mobility shift assays showed that PhoP(DBD) does not bind directly to the actII-ORF4, redD and atrA promoters, but it binds to the afsS promoter, in a region overlapping with the AfsR operator. DNase I footprinting studies revealed a PhoP protected region of 26 nt (PHO box; two direct repeats of 11 nt) that overlaps with the AfsR binding sequence. Binding experiments indicated a competition between AfsR and PhoP; increasing concentrations of PhoP(DBD) resulted in the disappearance of the AfsR-DNA complex. Expression studies using the reporter luxAB gene coupled to afsS promoter showed that PhoP downregulates afsS expression probably by a competition with the AfsR activator. Interestingly, AfsR binds to other PhoP-regulated promoters including those of pstS (a component of the phosphate transport system) and phoRP (encoding the two component system itself). Analysis of the AfsR-protected sequences in each of these promoters allowed us to distinguish the AfsR binding sequence from the overlapping PHO box. The reciprocal regulation of the phoRP promoter by AfsR and of afsS by PhoP suggests a fine interplay of these regulators on the control of secondary metabolism.

Authors: Fernando Santos-Beneit, , Alberto Sola-Landa,

Date Published: 11th Feb 2009

Publication Type: Not specified

Abstract (Expand)

The transport of inorganic phosphate (P(i)) is essential for the growth of all organisms. The metabolism of soil-dwelling Streptomyces species, and their ability to produce antibiotics and other secondary metabolites, are strongly influenced by the availability of phosphate. The transcriptional regulation of the SCO4138 and SCO1845 genes of Streptomyces coelicolor was studied. These genes encode the two putative low-affinity P(i) transporters PitH1 and PitH2, respectively. Expression of these genes and that of the high-affinity transport system pstSCAB follows a sequential pattern in response to phosphate deprivation, as shown by coupling their promoters to a luciferase reporter gene. Expression of pitH2, but not that of pap-pitH1 (a bicistronic transcript), is dependent upon the response regulator PhoP. PhoP binds to specific sequences consisting of direct repeats of 11 nt in the promoter of pitH2, but does not bind to the pap-pitH1 promoter, which lacks these direct repeats for PhoP recognition. The transcription start point of the pitH2 promoter was identified by primer extension analyses, and the structure of the regulatory sequences in the PhoP-protected DNA region was established. It consists of four central direct repeats flanked by two other less conserved repeats. A model for PhoP regulation of this promoter is proposed based on the four promoter DNA-PhoP complexes detected by electrophoretic mobility shift assays and footprinting studies.

Authors: Fernando Santos-Beneit, , Etelvina Franco-Domínguez,

Date Published: 1st Aug 2008

Publication Type: Not specified

Powered by
(v.1.16.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH