Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

Streptomyces coelicolor, the model species of the genus Streptomyces, presents a complex life cycle of successive morphological and biochemical changes involving the formation of substrate and aerial mycelium, sporulation and the production of antibiotics. The switch from primary to secondary metabolism can be triggered by nutrient starvation and is of particular interest as some of the secondary metabolites produced by related Streptomycetes are commercially relevant. To understand these events on a molecular basis, a reliable technical platform encompassing reproducible fermentation as well as generation of coherent transcriptomic data is required. Here, we investigate the technical basis of a previous study as reported by Nieselt et al. (BMC Genomics 11:10, 2010) in more detail, based on the same samples and focusing on the validation of the custom-designed microarray as well as on the reproducibility of the data generated from biological replicates. We show that the protocols developed result in highly coherent transcriptomic measurements. Furthermore, we use the data to predict chromosomal gene clusters, extending previously known clusters as well as predicting interesting new clusters with consistent functional annotations.

Authors: F. Battke, A. Herbig, A. Wentzel, O. M. Jakobsen, M. Bonin, D. A. Hodgson, W. Wohlleben, T. E. Ellingsen, K. Nieselt

Date Published: 25th Mar 2011

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples. RESULTS: Surprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis. CONCLUSIONS: Our study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological setting.

Authors: , Florian Battke, Alexander Herbig, , , , , , , , , Edward R Morrissey, Miguel A Juarez-Hermosillo, , Merle Nentwich, , Mudassar Iqbal, , , , , , , , Michael Bonin, , , , , , , , , ,

Date Published: 28th May 2009

Publication Type: Not specified

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH