Integrating endometrial proteomic and single cell transcriptomic pipelines reveals distinct menstrual cycle and endometriosis-associated molecular profiles

Lauren Baugh, Brittany A. Goods, Juan S. Gnecco, Yunbeen Bae, Michael Retchin, Constantine N. Tzouanas, Megan Loring, Keith Isaacson, Alex K. Shalek, Douglas Lauffenburger, Linda Griffith

https://www.medrxiv.org/content/10.1101/2022.01.29.22269829v1

Endometriosis is a debilitating gynecological disorder affecting approximately 10% of the female population. Despite its prevalence, robust methods to classify and treat endometriosis remain elusive. Changes throughout the menstrual cycle in tissue size, architecture, cellular composition, and individual cell phenotypes make it extraordinarily challenging to identify markers or cell types associated with uterine pathologies since disease-state alterations in gene and protein expression are convoluted with cycle phase variations. Here, we developed an integrated workflow to generate both proteomic and single-cell RNA-sequencing (scRNA-seq) data sets using tissues and cells isolated from the uteri of control and endometriotic donors. Using a linear mixed effect model (LMM), we identified proteins associated with cycle stage and disease, revealing a set of genes that drive separation across these two biological variables. Further, we analyzed our scRNA-seq data to identify cell types expressing cycle and disease- associated genes identified in our proteomic data. A module scoring approach was used to identify cell types driving the enrichment of certain biological pathways, revealing several pathways of interest across different cell subpopulations. Finally, we identified ligand-receptor pairs including Axl/Tyro3 – Gas6, that may modulate interactions between endometrial macrophages and/or endometrial stromal/epithelial cells. Analysis of these signaling pathways in an independent cohort of endometrial biopsies revealed a significant decrease in Tyro3 expression in patients with endometriosis compared to controls, both transcriptionally and through histological staining. This measured decrease in Tryo3 in patients with disease could serve as a novel diagnostic biomarker or treatment avenue for patients with endometriosis. Taken together, this integrated approach provides a framework for integrating LMMs, proteomic and RNA-seq data to deconvolve the complexities of complex uterine diseases and identify novel genes and pathways underlying endometriosis.

SEEK ID: https://fairdomhub.org/studies/1144

Endometriosis

Projects: Endometriosis

Study position:

help Creators and Submitter
Activity

Views: 403

Created: 17th Mar 2023 at 13:57

Last updated: 17th Nov 2023 at 21:44

help Tags

This item has not yet been tagged.

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH