This SOP describes the docking of pteridine libraries into PTR1 or DHFR target receptors, using Glide and Prime in Schrödinger Maestro as part of the Induced Fit workflow to allow for receptor side chain reorganization upon ligand binding.
Export PNG
Views: 1576 Downloads: 78
Created: 22nd Sep 2020 at 13:24
Last updated: 30th Sep 2020 at 10:03
None
Version History
Version 1 (earliest) Created 22nd Sep 2020 at 13:24 by Ina Poehner
No revision comments
Related items
Projects: Kinetics on the move - Workshop 2016, COVID-19 Disease Map, NMTrypI - New Medicines for Trypanosomatidic Infections, CoVIDD - Coronavirus interactions in drug discovery - optimization and implementation
Institutions: Kinetics on the move Workshop at HITS, Heidelberg Institute for Theoretical Studies (HITS gGmbH), University of Eastern Finland (UEF)
https://orcid.org/0000-0002-2801-8902Group Leader, Molecular and Cellular Modeling Group, EML Research, Heidelberg
Projects: NMTrypI - New Medicines for Trypanosomatidic Infections
Web page: https://cordis.europa.eu/programme/id/FP7_HEALTH.2013.2.3.4-2
The New Medicines for Trypanosomatidic Infections - NMTrypI project aimed at obtaining new candidate drugs against Trypanosomatidic infections with appropriate efficiency from the lead phase to the final preclinical phase that are more accessible to patients.
Programme: Drug development for neglected parasitic diseases
Public web page: https://fp7-nmtrypi.eu/
Start date: 1st Feb 2014
End date: 31st Jan 2017
Multidisciplinary development of selective anti-parasitic multi-target inhibitors of PTR1/DHFR based on a pteridine scaffold.
Submitter: Ina Poehner
Studies: Docking to PTR1 and DHFR targets and off-targets, In silico property and correlation analysis
Assays: Compound library preparation, Correlation analysis between PTR1 and DHFR activities and anti-parasitic..., Correlation analysis between predicted ADMET properties and anti-parasit..., Docking receptor preparation, In silico ADMET data prediction, Induced-fit docking studies, PAINS filtering, Rigid-body docking studies
Snapshots: Snapshot 1
Rigid-body docking studies and induced-fit docking studies of pteridine-based compounds to the target proteins TbPTR1, TbDHFR, LmPTR1, LmDHFR and the off-target hDHFR. For both PTR1 variants and human DHFR, conserved structural water sets were considered. Preparations of compound libraries and docking receptors are also covered.
Submitter: Ina Poehner
Investigation: Pteridines as anti-kinetoplastid folate-pathway...
Assays: Compound library preparation, Docking receptor preparation, Induced-fit docking studies, Rigid-body docking studies
Snapshots: No snapshots
Docking results of pteridine-based compounds in different target PTR1 and DHFR receptors and the off-target human DHFR when using an induced fit docking routine with an initial crude ligand placement step, subsequent receptor optimization in response to ligand binding and another docking step into the optimized receptor.
Submitter: Ina Poehner
Biological problem addressed: Model Analysis Type
Investigation: Pteridines as anti-kinetoplastid folate-pathway...
Organisms: Leishmania major, Trypanosoma brucei
Models: No Models
SOPs: Induced fit docking with Glide and Prime as par...
Data files: PDB files of induced fit docking results for se..., PDB files of induced fit docking results for se..., PDB files of induced fit docking results for se..., PDB files of induced fit docking results for se..., PDB files of induced fit docking results for th..., PDB files of induced fit docking results for th..., PDB files of induced fit docking results for th..., PDB files of induced fit docking results for th...
Snapshots: No snapshots