Publications

What is a Publication?
5 Publications matching the given criteria: (Clear all filters)
Author: Thomas Millat5

Abstract (Expand)

Background The stressosome is a bacterial signalling complex that responds to environmental changes by initiating a protein partner switching cascade, which leads to the release of the alternative sigma factor, sigmaB. Stress perception increases the phosphorylation of the stressosome sensor protein, RsbR, and the scaffold protein, RsbS, by the protein kinase RsbT. Subsequent dissociation of RsbT from the stressosome activates the sigmaB cascade. However, the sequence of physical events that occur in the stressosome during signal transduction is insufficiently understood. Results Here, we use computational modelling to correlate the structure of the stressosome with the efficiency of the phosphorylation reactions that occur upon activation by stress. In our model, the phosphorylation of any stressosome protein is dependent upon its nearest neighbours and their phosphorylation status. We compare different hypotheses about stressosome activation and find that only the model representing the allosteric activation of the kinase RsbT, by phosphorylated RsbR, qualitatively reproduces the experimental data. Conclusions Our simulations and the associated analysis of published data support the following hypotheses: (i) a simple Boolean model is capable of reproducing stressosome dynamics, (ii) different stressors induce identical stressosome activation patterns, and we also confirm that (i) phosphorylated RsbR activates RsbT, and (ii) the main purpose of RsbX is to dephosphorylate RsbS-P.

Authors: , , Jon Marles-Wright, ,

Date Published: 2013

Publication Type: Not specified

Abstract (Expand)

In Bacillus subtilis the σB mediated general stress response provides protection against various environmental and energy related stress conditions. To better understand the general stress response, we need to explore the mechanism by which the components interact. Here, we performed experiments in B. subtilis wild type and mutant strains to test and validate a mathematical model of the dynamics of σB activity. In the mutant strain BSA115, σB transcription is inducible by the addition of IPTG and negative control of σB activity by the anti-sigma factor RsbW is absent. In contrast to our expectations of a continuous β-galactosidase activity from a ctc::lacZ fusion, we observed a transient activity in the mutant. To explain this experimental finding, we constructed mathematical models reflecting different hypotheses regarding the regulation of σB and β-galactosidase dynamics. Only the model assuming instability of either ctc::lacZ mRNA or β-galactosidase protein is able to reproduce the experiments in silico. Subsequent Northern blot experiments revealed stable high-level ctc::lacZ mRNA concentrations after the induction of the σB response. Therefore, we conclude that protein instability following σB activation is the most likely explanation for the experimental observations. Our results thus support the idea that B. subtilis increases the cytoplasmic proteolytic degradation to adapt the proteome in face of environmental challenges following activation of the general stress response. The findings also have practical implications for the analysis of stress response dynamics using lacZ reporter gene fusions, a frequently used strategy for the σB response.

Authors: , , , , Georg Homuth, ,

Date Published: 2012

Publication Type: Not specified

Abstract (Expand)

Background Signalling pathways are complex systems in which not only simple monomeric molecules interact, but also more complex structures that include constitutive or induced protein assemblies. In particular, the hetero-and homo-dimerisation of proteins is a commonly encountered motif in signalling pathways. Several authors have suggested in recent times that dimerisation relates to a series of physical and biological outcomes used by the cell in the regulation of signal transduction. Results In this paper we investigate the role of homodimerisation in receptor-protein transducer interactions. Towards this end, mathematical modelling is used to analyse the features of such kind of interactions and to predict the behaviour of the system under different experimental conditions. A kinetic model in which the interaction between homodimers provokes a dual mechanism of activation (single and double protein transducer activation at the same time) is proposed. In addition, we analyse under which conditions the use of a power-law representation for the system is useful. Furthermore, we investigate the dynamical consequences of this dual mechanism and compare the performance of the system in different simulated experimental conditions. Conclusion The analysis of our mathematical model suggests that in receptor-protein interacting systems with dual mechanism there may be a shift between double and single activation in a way that intense double protein transducer activation could initiate and dominate the signal in the short term (getting a fast intense signal), while single protein activation could control the system in the medium and long term (when input signal is weaker and decreases slowly). Our investigation suggests that homodimerisation and oligomerisation are mechanisms used to enhance and regulate the dynamic properties of the initial steps in signalling pathways.

Authors: Julio Vera, , Walter Kolch,

Date Published: 2008

Publication Type: Not specified

Abstract (Expand)

We investigate design principles of linear multi-stage phosphorylation cascades by using quantitative measures for signaling time, signal duration and signal amplitude. We compare alternative pathway structures by varying the number of phosphorylations and the length of the cascade. We show that a model for a weakly activated pathway does not reflect the biological context well, unless it is restricted to certain parameter combinations. Focusing therefore on a more general model, we compare alternative structures with respect to a multivariate optimization criterion. We test the hypothesis that the structure of a linear multi-stage phosphorylation cascade is the result of an optimization process aiming for a fast response, defined by the minimum of the product of signaling time and signal duration. It is then shown that certain pathway structures minimize this criterion. Several popular models of MAPK cascades form the basis of our study. These models represent different levels of approximation, which we compare and discuss with respect to the quantitative measures.

Authors: Simone Frey, , Stefan Hohmann,

Date Published: 6th Sep 2007

Publication Type: Not specified

Abstract (Expand)

Bistable systems play an important role in the functioning of living cells. Depending on the strength of the necessary positive feedback one can distinguish between (irreversible) "one-way switch" or (reversible) "toggle-switch" type behavior. Besides the well- established steady-state properties, some important characteristics of bistable systems arise from an analysis of their dynamics. We demonstrate that a supercritical stimulus amplitude is not sufficient to move the system from the lower (off-state) to the higher branch (on-state) for either a step or a pulse input. A switching surface is identified for the system as a function of the initial condition, input pulse amplitude and duration (a supercritical signal). We introduce the concept of bounded autonomy for single level systems with a pulse input. Towards this end, we investigate and characterize the role of the duration of the stimulus. Furthermore we show, that a minimal signal power is also necessary to change the steady state of the bistable system. This limiting signal power is independent of the applied stimulus and is determined only by systems parameters. These results are relevant for the design of experiments, where it is often difficult to create a defined pattern for the stimulus. Furthermore, intracellular processes, like receptor internalization, do manipulate the level of stimulus such that level and duration of the stimulus is conducive to characteristic behavior.

Authors: , Sree N Sreenath, Radina P Soebiyanto, Jayant Avva, Kwang-Hyun Cho,

Date Published: 17th Jan 2007

Publication Type: Not specified

Powered by
(v.1.17.0)
Copyright © 2008 - 2025 The University of Manchester and HITS gGmbH