Models
What is a Model?Filters
PGK model for S. solfataricus
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Algebraic equations
Model format: Mathematica
Environment: Mathematica
PGK-GAPDH model Sulfolobus kouril8
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
PGK 70C SBML
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Metabolic model of Sulfolobus solfataricus P2 in the SBML (sbml) and metano (txt, sce, fba) format. Scenarios are specific for growth on D-glucose or caseinhydrolysate as sole carbon source.
Creator: Helge Stark
Submitter: Helge Stark
Model type: Metabolic network
Model format: SBML
Environment: Not specified
Metabolic model of Sulfolobus solfataricus P2 in the SBML (xml) and metano (txt, sce, fba) format. Scenarios are specific for growth on D-glucose or L-fucose as sole carbon source. Different theoretical routes of L-fucose degradation were modeled (E. coli-like, Xanthomonas-like and lactaldehyde-forming). Highest overall agreement between the model and experimental data was observed for the lactaldehyde-forming route.
Creators: Jacqueline Wolf, Helge Stark, Dietmar Schomburg
Submitter: Jacqueline Wolf
Model type: Metabolic network
Model format: SBML
Environment: Not specified
Model of reconstituted gluconeogenesis system in S. solfataricus based on the individual kinetic models for PGK, GAPDH, TPI, FBPAase.
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: SBML
Environment: JWS Online
Exponential decay model of gluconeogenic intermediates
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: Mathematica
Environment: Not specified
Mathematical model for TPI kinetics, GAP and DHAP saturation, and inhibition with 3PG and PEP.
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: Mathematica
Environment: Not specified
Mathematical model for GAPDH kinetics, BPG, NADPH, NADP, GAP and Pi saturation.
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: Mathematica
Environment: Not specified
Mathematical model for FBPAase kinetics, saturation with DHAP and GAP
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: Mathematica
Environment: Not specified
Mathematical model for PGK kinetics, ADP, ATP, 3PG and BPG saturation.
Creator: Jacky Snoep
Submitter: Jacky Snoep
Model type: Ordinary differential equations (ODE)
Model format: Mathematica
Environment: Not specified
The model describes the Entner-Doudoroff pathway in Sulfolobus solfataricus under temperature variation. The package contains source code written in FORTRAN as well as binaries for Mac OSX, Linux, and Windows. If compiling from source code, a FORTRAN compiler is required. On-line versions of the model are also available at: http://bioinfo.ux.uis.no/sulfosys http://jjj.biochem.sun.ac.za/sysmo/projects/Sulfo-Sys/index.html
Creator: Peter Ruoff
Submitter: Peter Ruoff
Model type: Ordinary differential equations (ODE)
Model format: Not specified
Environment: Not specified