Publications

What is a Publication?
2 Publications matching the given criteria: (Clear all filters)

Abstract (Expand)

Understanding gene regulation requires knowledge of changes in transcription factor (TF) activities. Simultaneous direct measurement of numerous TF activities is currently impossible. Nevertheless, statistical approaches to infer TF activities have yielded non-trivial and verifiable predictions for individual TFs. Here, global statistical modelling identifies changes in TF activities from transcript profiles of Escherichia coli growing in stable (fixed oxygen availabilities) and dynamic (changing oxygen availability) environments. A core oxygen-responsive TF network, supplemented by additional TFs acting under specific conditions, was identified. The activities of the cytoplasmic oxygen-responsive TF, FNR, and the membrane-bound terminal oxidases implied that, even on the scale of the bacterial cell, spatial effects significantly influence oxygen-sensing. Several transcripts exhibited asymmetrical patterns of abundance in aerobic to anaerobic and anaerobic to aerobic transitions. One of these transcripts, ndh, encodes a major component of the aerobic respiratory chain and is regulated by oxygen-responsive TFs ArcA and FNR. Kinetic modelling indicated that ArcA and FNR behaviour could not explain the ndh transcript profile, leading to the identification of another TF, PdhR, as the source of the asymmetry. Thus, this approach illustrates how systematic examination of regulatory responses in stable and dynamic environments yields new mechanistic insights into adaptive processes.

Authors: , Andrea Ocone, Melanie R Stapleton, Simon Hall, Eleanor W Trotter, , ,

Date Published: 8th Aug 2012

Publication Type: Not specified

Abstract (Expand)

SUMMARY: TFInfer is a novel open access, standalone tool for genome-wide inference of transcription factor activities from gene expression data. Based on an earlier MATLAB version, the software has now been extended in a number of ways. It has been significantly optimised in terms of performance, and it was given novel functionality, by allowing the user to model both time series and data from multiple independent conditions. With a full documentation and intuitive graphical user interface, together with an in-built data base of yeast and Escherichia coli transcription factors, the software does not require any mathematical or computational expertise to be used effectively. AVAILABILITY: http://homepages.inf.ed.ac.uk/gsanguin/TFInfer.html CONTACT: gsanguin@staffmail.ed.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Authors: H M Shahzad Asif, , , Neil D Lawrence, Magnus Rattray,

Date Published: 24th Aug 2010

Publication Type: Not specified

Powered by
(v.1.16.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH