Publications

What is a Publication?
16 Publications visible to you, out of a total of 16

Abstract (Expand)

We assessed mechanistic temperature influence on flowering by incorporating temperature-responsive flowering mechanisms across developmental age into an existing model. Temperature influences the leaf production rate as well as expression of FLOWERING LOCUS T (FT), a photoperiodic flowering regulator that is expressed in leaves. The Arabidopsis Framework Model incorporated temperature influence on leaf growth but ignored the consequences of leaf growth on and direct temperature influence of FT expression. We measured FT production in differently aged leaves and modified the model, adding mechanistic temperature influence on FT transcription, and causing whole-plant FT to accumulate with leaf growth. Our simulations suggest that in long days, the developmental stage (leaf number) at which the reproductive transition occurs is influenced by day length and temperature through FT, while temperature influences the rate of leaf production and the time (in days) the transition occurs. Further, we demonstrate that FT is mainly produced in the first 10 leaves in the Columbia (Col-0) accession, and that FT accumulation alone cannot explain flowering in conditions in which flowering is delayed. Our simulations supported our hypotheses that: (i) temperature regulation of FT, accumulated with leaf growth, is a component of thermal time, and (ii) incorporating mechanistic temperature regulation of FT can improve model predictions when temperatures change over time.

Authors: Hannah A Kinmonth-Schultz, Melissa J S MacEwen, Daniel D Seaton, Andrew J Millar, Takato Imaizumi, Soo-Hyung Kim

Date Published: 2019

Publication Type: Journal

Abstract (Expand)

Photoperiodism allows organisms to measure daylength, or external photoperiod, and to anticipate coming seasons. Daylength measurement requires the integration of light signal and temporal information by the circadian clock. In the long-day plant Arabidopsis thaliana, CONSTANS (CO) plays a crucial role in integrating the circadian rhythm and environmental light signals into the photoperiodic flowering pathway. Nevertheless, the molecular mechanism by which the circadian clock modulates the cyclic expression profile of CO is poorly understood. Here, we first showed that the clock-associated genes PSEUDO-RESPONSE REGULATOR (PRR) PRR9, PRR7 and PRR5 are involved in activation of CO expression during the daytime. Then, extensive genetic studies using CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) double mutants (cca1/lhy) and prr7/prr5 were conducted. The results suggested that PRR genes act coordinately in a manner parallel with and antagonistic to CCA/LHY, upstream of the canonical CO-FLOWERING LOCUS T (FT) photoperiodic flowering pathway. Finally, we provided evidence to propose a model, in which CCA1/LHY repress CO through GIGANTEA (GI), while PRR9, PRR7 and PRR5 activate CO predominantly by repressing CYCLING DOF FACTOR1 (CDF1) encoding a DNA-binding transcriptional repressor.

Authors: N. Nakamichi, M. Kita, K. Niinuma, S. Ito, T. Yamashino, T. Mizoguchi, T. Mizuno

Date Published: 17th May 2007

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH