Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

SUMMARY: Computational metabolic models typically encode for graphs of species, reactions, and enzymes. Comparing genome-scale models through topological analysis of multipartite graphs is challenging.. However, in many practical cases it is not necessary to compare the full networks. The GEMtractor is a web-based tool to trim models encoded in SBML. It can be used to extract subnetworks, for example focusing on reaction- and enzyme-centric views into the model. AVAILABILITY AND IMPLEMENTATION: The GEMtractor is licensed under the terms of GPLv3 and developed at github.com/binfalse/GEMtractor - a public version is available at sbi.uni-rostock.de/gemtractor.

Authors: Martin Scharm, Olaf Wolkenhauer, Mahdi Jalili, Ali Salehzadeh-Yazdi

Date Published: 31st Jan 2020

Publication Type: Journal

Abstract (Expand)

Streptomyces coelicolor M1152 is a widely used host strain for the heterologous production of novel small molecule natural products, genetically engineered for this purpose through e.g. deletion of four of its native biosynthetic gene clusters (BGCs) for improved precursor supply. Regardless of its potential, a systems understanding of its tight regulatory network and the effects of the significant genomic changes in M1152 is missing. In this study, we compare M1152 to its ancestor M145, thereby connecting observed phenotypic differences to changes on transcription and translation. Measured protein levels are connected to predicted metabolic fluxes, facilitated by an enzyme-constrained genome-scale model (GEM), that by itself is a consensus result of a community effort. This approach connects observed differences in growth rate and glucose consumption to changes in central carbon metabolism, accompanied by differential expression of important regulons. Results suggest that precursors supply is not limiting secondary metabolism, informing that alternative strategies will be beneficial for further development of S. coelicolor for heterologous production of novel compounds.

Authors: Snorre Sulheim, Tjaša Kumelj, Dino van Dissel, Ali Salehzadeh-Yazdi, Chao Du, Gilles P. van Wezel, Kay Nieselt, Eivind Almaas, Alexander Wentzel, Eduard J Kerkhoven

Date Published: 8th Oct 2019

Publication Type: Unpublished

Powered by
(v.1.15.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH