Publications

What is a Publication?
6 Publications matching the given criteria: (Clear all filters)
Author: Carole Goble6

Abstract (Expand)

The FAIRDOMHub is a repository for publishing FAIR (Findable, Accessible, Interoperable and Reusable) Data, Operating procedures and Models (https://fairdomhub.org/) for the Systems Biology community. It is a web-accessible repository for storing and sharing systems biology research assets. It enables researchers to organize, share and publish data, models and protocols, interlink them in the context of the systems biology investigations that produced them, and to interrogate them via API interfaces. By using the FAIRDOMHub, researchers can achieve more effective exchange with geographically distributed collaborators during projects, ensure results are sustained and preserved and generate reproducible publications that adhere to the FAIR guiding principles of data stewardship.

Authors: K. Wolstencroft, O. Krebs, J. L. Snoep, N. J. Stanford, F. Bacall, M. Golebiewski, R. Kuzyakiv, Q. Nguyen, S. Owen, S. Soiland-Reyes, J. Straszewski, D. D. van Niekerk, A. R. Williams, L. Malmstrom, B. Rinn, W. Muller, C. Goble

Date Published: 4th Jan 2017

Publication Type: Journal

Abstract (Expand)

The FAIRDOMHub is a repository for publishing FAIR (Findable, Accessible, Interoperable and Reusable) Data, Operating procedures and Models (https://fairdomhub.org/) for the Systems Biology community. It is a web-accessible repository for storing and sharing systems biology research assets. It enables researchers to organize, share and publish data, models and protocols, interlink them in the context of the systems biology investigations that produced them, and to interrogate them via API interfaces. By using the FAIRDOMHub, researchers can achieve more effective exchange with geographically distributed collaborators during projects, ensure results are sustained and preserved and generate reproducible publications that adhere to the FAIR guiding principles of data stewardship.

Authors: K. Wolstencroft, O. Krebs, J. L. Snoep, N. J. Stanford, F. Bacall, M. Golebiewski, R. Kuzyakiv, Q. Nguyen, S. Owen, S. Soiland-Reyes, J. Straszewski, D. D. van Niekerk, A. R. Williams, L. Malmstrom, B. Rinn, W. Muller, C. Goble

Date Published: 4th Jan 2017

Publication Type: Journal

Abstract (Expand)

Reconstructing and understanding the Human Physiome virtually is a complex mathematical problem, and a highly demanding computational challenge. Mathematical models spanning from the molecular level through to whole populations of individuals must be integrated, then personalized. This requires interoperability with multiple disparate and geographically separated data sources, and myriad computational software tools. Extracting and producing knowledge from such sources, even when the databases and software are readily available, is a challenging task. Despite the difficulties, researchers must frequently perform these tasks so that available knowledge can be continually integrated into the common framework required to realize the Human Physiome. Software and infrastructures that support the communities that generate these, together with their underlying standards to format, describe and interlink the corresponding data and computer models, are pivotal to the Human Physiome being realized. They provide the foundations for integrating, exchanging and re-using data and models efficiently, and correctly, while also supporting the dissemination of growing knowledge in these forms. In this paper, we explore the standards, software tooling, repositories and infrastructures that support this work, and detail what makes them vital to realizing the Human Physiome.

Authors: D. Nickerson, K. Atalag, B. de Bono, J. Geiger, C. Goble, S. Hollmann, J. Lonien, W. Muller, B. Regierer, N. J. Stanford, M. Golebiewski, P. Hunter

Date Published: 7th Apr 2016

Publication Type: Not specified

Abstract (Expand)

The increase in volume and complexity of biological data has led to increased requirements to reuse that data. Consistent and accurate metadata is essential for this task, creating new challenges in semantic data annotation and in the constriction of terminologies and ontologies used for annotation. The BioSharing community are developing standards and terminologies for annotation, which have been adopted across bioinformatics, but the real challenge is to make these standards accessible to laboratory scientists. Widespread adoption requires the provision of tools to assist scientists whilst reducing the complexities of working with semantics. This paper describes unobtrusive ‘stealthy’ methods for collecting standards compliant, semantically annotated data and for contributing to ontologies used for those annotations. Spreadsheets are ubiquitous in laboratory data management. Our spreadsheet-based RightField tool enables scientists to structure information and select ontology terms for annotation within spreadsheets, producing high quality, consistent data without changing common working practices. Furthermore, our Populous spreadsheet tool proves effective for gathering domain knowledge in the form of Web Ontology Language (OWL) ontologies. Such a corpus of structured and semantically enriched knowledge can be extracted in Resource Description Framework (RDF), providing further means for searching across the content and contributing to Open Linked Data (http://linkeddata.org/)

Authors: , , Matthew Horridge, Simon Jupp, , , , , Robert Stevens,

Date Published: 1st Feb 2013

Publication Type: Journal

Abstract (Expand)

RightField is a Java application that provides a mechanism for embedding ontology annotation support for scientific data in Microsoft Excel or Open Office spreadsheets. The result is semantic annotation by stealth, with an annotation process that is less error-prone, more efficient, and more consistent with community standards. By automatically generating RDF statements for each cell a rich, Linked Data querying environment allows scientists to search their data and other Linked Data resources interchangeably, and caters for queries across heterogeneous spreadsheets. RightField has been developed for Systems Biologists but has since adopted more widely. It is open source (BSD license) and freely available from http://www.rightfield.org.uk

Authors: Katy Wolstencroft, Stuart Owen, Matthew Horridge, Wolfgang Mueller, Finn Bacall, Jacky Snoep, Franco du Preez, Quyen Nguyen, Olga Krebs, Carole Goble

Date Published: 2012

Publication Type: Journal

Abstract (Expand)

MOTIVATION: In the Life Sciences, guidelines, checklists and ontologies describing what metadata is required for the interpretation and reuse of experimental data are emerging. Data producers, however, may have little experience in the use of such standards and require tools to support this form of data annotation. RESULTS: RightField is an open source application that provides a mechanism for embedding ontology annotation support for Life Science data in Excel spreadsheets. Individual cells, columns or rows can be restricted to particular ranges of allowed classes or instances from chosen ontologies. The RightField-enabled spreadsheet presents selected ontology terms to the users as a simple drop-down list, enabling scientists to consistently annotate their data. The result is 'semantic annotation by stealth', with an annotation process that is less error-prone, more efficient, and more consistent with community standards. AVAILABILITY AND IMPLEMENTATION: RightField is open source under a BSD license and freely available from http://www.rightfield.org.uk

Authors: , , Matthew Horridge, , , , ,

Date Published: 15th Jul 2011

Publication Type: Journal

Powered by
(v.1.17.0)
Copyright © 2008 - 2025 The University of Manchester and HITS gGmbH