Investigations
What is an Investigation?Because enzyme activity depends very much on the reaction conditions, it is crucial to report all these metadata (see for example the STRENDA Guidelines:https://www.beilstein-strenda-db.org/strenda/public/guidelines.xhtml).
Another challenge in experiments to determine enzyme reaction parameters is the choice of suitable substrate concentrations to enable optimal kinetic fits and the informed choice of a kinetic model.
A Jupyter notebook is given to assist in the choice of substrate concentrations ...
Submitter: Gudrun Gygli
Studies: Analyse an Initial Rate Experiment, Design an Initial Rate Experiment, Progress Curve Analysis, Selwyn Test
Assays: Use a Jupyter Notebook to design an initital rate experiment, Use a Jupyter Notebook to model Michaelis-Menten Kinetics on experimenta..., Use a Jupyter Notebook to understand how a progress curve experiment can..., Use a Jupyter Notebook to understand how the Selwyn test works
An experimental workflow to provide detailed information of the molecular mechanisms of enzymes is described. This workflow will help in the application of enzymes in technical processes by providing crucial parameters needed to plan, model and implement biocatalytic processes more efficiently. These parameters are homogeneity of the enzyme sample (HES), kinetic and thermodynamic parameters of enzyme kinetics and binding of reactants to enzymes. The techniques used to measure these properties are ...
Submitter: Gudrun Gygli
Studies: DLS measurements (homogeneity of an enzyme sample), ITC binding experiments, ITC kinetic experiments (enzyme activity), Spectrophotometric Activity Measurements
Assays: Analysis of data from ITC experiments (binding), Analysis of data from ITC experiments (kinetics), Binding of HK to Gre2p (ITC-BIND), Binding of NADP+ to Gre2p in HEPES Buffer (ITC-BIND), Binding of NADP+ to Gre2p in KPi Buffer (ITC-BIND), Binding of NADP+ to Gre2p in PBS Buffer (ITC-BIND), Binding of NADPH to Gre2p in HEPES Buffer (ITC-BIND), Binding of NADPH to Gre2p in KPi Buffer (ITC-BIND), Binding of NADPH to Gre2p in PBS Buffer (ITC-BIND), Binding of NADPH to Gre2p in Tween-KPi Buffer (ITC-BIND), Binding of NDK to Gre2p (ITC-BIND), DLS measurements in 2 buffers, DLS measurements in KPi Buffer and in KPi buffer with Tween added, DLS measurements in KPi buffer with BSA added, Kinetic parameters of Gre2p, Kinetics of the reaction of NDK and NADPH with Gre2p (ITC-MIM) in HEPES ..., Kinetics of the reaction of NDK and NADPH with Gre2p (ITC-MIM) in KPi bu..., Kinetics of the reaction of NDK and NADPH with Gre2p (ITC-MIM) in PBS bu..., Kinetics of the reaction of NDK and NADPH with Gre2p (ITC-MIM) in Tween-..., Kinetics of the reaction of NDK and NADPH with Gre2p (ITC-rSIM) in 3 buf..., Selwyn test of Gre2p, Specific activity of Gre2p
This is a collection of deep eutectic solvent (DES) experimental and simulation data that is stored in CML format and analysed using gradient boosting decision trees.