Models

What is a Model?
26 Models visible to you, out of a total of 51

Originally submitted model file for PLaSMo accession ID PLM_1030, version 1

Model derived from U2019.2, fitted to TiMet data mutants data set. Fixed parameters are scaling factors, COP1 and cP parameters. The rest of the parameters were left optimisable. The networks used in the fitting include WT, lhycca1, prr79, toc1, gi and ztl. The ztl network was only used for fixing the period in this mutant. Then final parameter values for transcription rated were obtained by taking the product of scaling factor and either transcription or translation, the latter required for ...

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

Model derived from U2019.1 in which the transcription rates were rescaled to match the scale of TiMet data set for absolute units of RNA concentration. The gmX scaling parameters in the model were fitted numerically. This model has equivalent dynamics to P2011.1.2.

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

Model derived from U2020.2, fitted to the TiMet RNA data for wild-type and clock mutants. Fixed parameters are scaling factors, COP1 and cP parameters. The rest of the parameters were left optimisable. The networks used in the fitting include WT, lhycca1, prr79, toc1, gi and ztl. The ztl network was only used for fixing the period in this mutant. Then final parameter values for transcription rates were obtained by taking the product of scaling factor and either transcription or translation, the ...

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

Model derived from U2020.1 by fitting the scaling factors for matching TiMet data set for wild-type and clock mutants, in absolute units.

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

Model derived from U2019.1, in which the way the PRR genes are regulated is modified. Repression mechanism introduced Instead of activation between the PRRs for producing the wave of expression. This is inspired in the result of three models P2012, F2014 and F2016. P2012 introduced TOC1 repression in earlier genes relative to its expression. F2014 introduced also the backward repression of PRR9 |-- PRR7 |--- PRR5, TOC1. However little attention was given to why there is a sharper expression ...

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

Model written in Antimony human-readable language and then translate into SBML using Tellurium

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

Model written in Antimony human-readable language, Model used in Pokhilko et al 2012

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

autogenerated equation listing from the SBML of U2020.3, as a .PDF file

Creators: Andrew Millar, Uriel Urquiza Garcia

Submitter: Andrew Millar

autogenerated equation listing from the SBML of U2019.3, as a .PDF file

Creators: Andrew Millar, Uriel Urquiza Garcia

Submitter: Andrew Millar

No description specified

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

No description specified

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

No description specified

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

No description specified

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

No description specified

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

No description specified

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

U2019.3 that simulates light condition with ISSF

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

U2020.2 that simulates light condition with ISSF

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

U2019.1 that simulates light condition with ISSF

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

U2019.3 that simulates light condition with ISSF

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

U2019.2 that simulates light condition with ISSF

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

U2019.1 that simulates light condition with ISSF

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

Model derived from P2011.1.2 in which the steady state assumptions for the Evening complex in P2011 were eliminated. After eliminating these assumptions the model was fitted to the original dynamics of P2011.1.2 for the networks WT, lhycca1, prr79, toc1, gi, ztl. In particular for the lhycca1 double mutant only the repressive "arms" (edges) for cL were set to zero. The parameter values or cP and for COP1 variables were fixed as these have been fitted before in Pokhilko et al 2012 Mol Sys Bio.

Creators: Uriel Urquiza Garcia, Andrew Millar

Submitter: Uriel Urquiza Garcia

From published files, Uriel Urquiza created SBML models with all 8 parameter sets published, and versions of F2014.1 to simulate multiple clock mutants, using SloppyCell

Arabidopsis clock model P2011.6.1 SBML imported into Copasi 4.8 and saved as native Copasi file.

Creators: Andrew Millar, Uriel Urquiza Garcia, Kevin Stratford, EPCC

Submitter: Andrew Millar

The P2011.3.1 SBML model imported into Copasi v4.8, saved as native Copasi file

Creators: Andrew Millar, Uriel Urquiza Garcia, Kevin Stratford, EPCC

Submitter: Andrew Millar

Powered by
(v.1.16.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH