Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

Anthrax is a zoonotic infectious disease caused by Bacillus anthracis (anthrax bacterium) that affects not only domestic and wild animals worldwide but also human health. As the study develops in-depth, a large quantity of related biomedical publications emerge. Acquiring knowledge from the literature is essential for gaining insight into anthrax etiology, diagnosis, treatment and research. In this study, we used a set of text mining tools to identify nearly 14 000 entities of 29 categories, such as genes, diseases, chemicals, species, vaccines and proteins, from nearly 8000 anthrax biomedical literature and extracted 281 categories of association relationships among the entities. We curated Anthrax-related Entities Dictionary and Anthrax Ontology. We formed Anthrax Knowledge Graph (AnthraxKG) containing more than 6000 nodes, 6000 edges and 32 000 properties. An interactive visualized Anthrax Knowledge Portal(AnthraxKP) was also developed based on AnthraxKG by using Web technology. AnthraxKP in this study provides rich and authentic relevant knowledge in many forms, which can help researchers carry out research more efficiently. Database URL: AnthraxKP is permitted users to query and download data at http://139.224.212.120:18095/.

Authors: B. Feng, J. Gao

Date Published: 2nd Jun 2022

Publication Type: Journal

Abstract (Expand)

How the network around ROS protects against oxidative stress and Parkinson's disease (PD), and how processes at the minutes timescale cause disease and aging after decades, remains enigmatic. Challenging whether the ROS network is as complex as it seems, we built a fairly comprehensive version thereof which we disentangled into a hierarchy of only five simpler subnetworks each delivering one type of robustness. The comprehensive dynamic model described in vitro data sets from two independent laboratories. Notwithstanding its five-fold robustness, it exhibited a relatively sudden breakdown, after some 80 years of virtually steady performance: it predicted aging. PD-related conditions such as lack of DJ-1 protein or increased alpha-synuclein accelerated the collapse, while antioxidants or caffeine retarded it. Introducing a new concept (aging-time-control coefficient), we found that as many as 25 out of 57 molecular processes controlled aging. We identified new targets for "life-extending interventions": mitochondrial synthesis, KEAP1 degradation, and p62 metabolism.

Authors: A. N Kolodkin, R. P. Sharma, A. M. Colangelo, A. Ignatenko, F. Martorana, D. Jennen, J. J. Briede, N. Brady, M. Barberis, T. D. G. A. Mondeel, M. Papa, V. Kumar, B. Peters, A. Skupin, L. Alberghina, R. Balling, H. V. Westerhoff

Date Published: 26th Oct 2020

Publication Type: Journal

Powered by
(v.1.16.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH