Publications

What is a Publication?
23 Publications visible to you, out of a total of 23

Abstract (Expand)

The molecular mechanisms underlying cell growth, cell division and pathogenesis in Streptococcus pneumoniae are still not fully understood. Single-cell methodologies are potentially of great value to investigate S. pneumoniae cell biology. Here, we report the construction of novel plasmids for single and double cross-over integration of functional fusions to the gene encoding a fast folding variant of the green fluorescent protein (GFP) into the S. pneumoniae chromosome. We have also established a zinc-inducible system for the fine control of gfp-fusion gene expression and for protein depletion experiments in S. pneumoniae. Using this novel single cell toolkit, we have examined the cellular localization of the proteins involved in the essential process of choline decoration of S. pneumoniae teichoic acid. GFP fusions to LicA and LicC, enzymes involved in the activation of choline, showed a cytoplasmic distribution, as predicted from their primary sequences. A GFP fusion to the choline importer protein LicB showed clear membrane localization. GFP fusions to LicD1 and LicD2, enzymes responsible for loading of teichoic acid subunits with choline, are also membrane-associated, even though both proteins lack any obvious membrane spanning domain. These results indicate that the decoration of teichoic acid by the LicD enzymes is a membrane-associated process presumably occurring at lipid-linked teichoic acid precursors.

Authors: Alice Eberhardt, Ling J Wu, Jeff Errington, Waldemar Vollmer,

Date Published: 8th Sep 2009

Publication Type: Not specified

Abstract (Expand)

The active center of RNA polymerase can hydrolyze phosphodiester bonds in nascent RNA, a reaction thought to be important for proofreading of transcription. The reaction proceeds via a general two Mg(2+) mechanism and is assisted by the 3' end nucleotide of the transcript. Here, by using Thermus aquaticus RNA polymerase, we show that the reaction also requires the flexible domain of the active center, the trigger loop (TL). We show that the invariant histidine (beta' His1242) of the TL is essential for hydrolysis/proofreading and participates in the reaction in two distinct ways: by positioning the 3' end nucleotide of the transcript that assists catalysis and/or by directly participating in the reaction as a general base. We also show that participation of the beta' His1242 of the TL in phosphodiester bond hydrolysis does not depend on the extent of elongation complex backtracking. We obtained similar results with Escherichia coli RNA polymerase, indicating that the function of the TL in phosphodiester bond hydrolysis is conserved among bacteria.

Authors: Yulia Yuzenkova,

Date Published: 1st Jun 2010

Publication Type: Not specified

Abstract (Expand)

How the human pathogen Streptococcus pneumoniae coordinates cell-wall synthesis during growth and division to achieve its characteristic oval shape is poorly understood. The conserved eukaryotic-type Ser/Thr kinase of S. pneumoniae, StkP, previously was reported to phosphorylate the cell-division protein DivIVA. Consistent with a role in cell division, GFP-StkP and its cognate phosphatase, GFP-PhpP, both localize to the division site. StkP localization depends on its penicillin-binding protein and Ser/Thr-associated domains that likely sense uncross-linked peptidoglycan, because StkP and PhpP delocalize in the presence of antibiotics that target the latest stages of cell-wall biosynthesis and in cells that have stopped dividing. Time-lapse microscopy shows that StkP displays an intermediate timing of recruitment to midcell: StkP arrives shortly after FtsA but before DivIVA. Furthermore, StkP remains at midcell longer than FtsA, until division is complete. Cells mutated for stkP are perturbed in cell-wall synthesis and display elongated morphologies with multiple, often unconstricted, FtsA and DivIVA rings. The data show that StkP plays an important role in regulating cell-wall synthesis and controls correct septum progression and closure. Overall, our results indicate that StkP signals information about the cell-wall status to key cell-division proteins and in this way acts as a regulator of cell division.

Authors: Katrin Beilharz, Linda Nováková, Daniela Fadda, Pavel Branny, Orietta Massidda,

Date Published: 21st Mar 2012

Publication Type: Not specified

Abstract (Expand)

Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in 'transcription traffic jams' on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes.

Authors: , , M. Herber, L. Attaiech, , , S. Klumpp, ,

Date Published: 6th Sep 2014

Publication Type: Not specified

Abstract (Expand)

The highly processive transcription by multi-subunit RNA polymerases (RNAP) can be interrupted by misincorporation or backtracking events that may stall transcription or lead to erroneous transcripts. Backtracked/misincorporated complexes can be resolved via hydrolysis of the transcript. Here, we show that, in response to misincorporation and/or backtracking, the catalytic domain of RNAP active centre, the trigger loop (TL), is substituted by transcription factor Gre. This substitution turns off the intrinsic TL-dependent hydrolytic activity of RNAP active centre, and exchanges it to a far more efficient Gre-dependent mechanism of RNA hydrolysis. Replacement of the TL by Gre factor occurs only in backtracked/misincorporated complexes, and not in correctly elongating complexes. This controlled switching of RNAP activities allows the processivity of elongation to be unaffected by the hydrolytic activity of Gre, while ensuring efficient proofreading of transcription and resolution of backtracked complexes.

Authors: Mohammad Roghanian, ,

Date Published: 27th Jan 2011

Publication Type: Not specified

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH