Publications

What is a Publication?
79 Publications visible to you, out of a total of 79

Abstract (Expand)

Sortases of Gram-positive bacteria catalyze the covalent C-terminal anchoring of proteins to the cell wall. Bacillus subtilis, a well-known host organism for protein production, contains two putative sortases named YhcS and YwpE. The present studies were aimed at investigating the possible sortase function of these proteins in B. subtilis. Proteomics analyses revealed that sortase-mutant cells released elevated levels of the putative sortase substrate YfkN into the culture medium upon phosphate starvation. The results indicate that YfkN required sortase activity of YhcS for retention in the cell wall. To analyze sortase function in more detail, we focused attention on the potential sortase substrate YhcR, which is co-expressed with the sortase YhcS. Our results showed that the sortase recognition and cell-wall-anchoring motif of YhcR is functional when fused to the Bacillus pumilus chitinase ChiS, a readily detectable reporter protein that is normally secreted. The ChiS fusion protein is displayed at the cell wall surface when YhcS is co-expressed. In the absence of YhcS, or when no cell-wall-anchoring motif is fused to ChiS, the ChiS accumulates predominately in the culture medium. Taken together, these novel findings show that B. subtilis has a functional sortase for anchoring proteins to the cell wall.

Authors: Hamidreza Fasehee, Helga Westers, Albert Bolhuis, Haike Antelmann, , Wim J Quax, Agha F Mirlohi, , Gholamreza Ahmadian

Date Published: 31st Aug 2011

Publication Type: Not specified

Abstract (Expand)

Any signal transduction requires communication between a sensory component and an effector. Some enzymes engage in signal perception and transduction, as well as in catalysis, and these proteins are known as "trigger" enzymes. In this report, we detail the trigger properties of RocG, the glutamate dehydrogenase of Bacillus subtilis. RocG not only deaminates the key metabolite glutamate to form alpha-ketoglutarate but also interacts directly with GltC, a LysR-type transcription factor that regulates glutamate biosynthesis from alpha-ketoglutarate, thus linking the two metabolic pathways. We have isolated mutants of RocG that separate the two functions. Several mutations resulted in permanent inactivation of GltC as long as a source of glutamate was present. These RocG proteins have lost their ability to catabolize glutamate due to a strongly reduced affinity for glutamate. The second class of mutants is exemplified by the replacement of aspartate residue 122 by asparagine. This mutant protein has retained enzymatic activity but has lost the ability to control the activity of GltC. Crystal structures of glutamate dehydrogenases that permit a molecular explanation of the properties of the various mutants are presented. Specifically, we may propose that D122N replacement affects the surface of RocG. Our data provide evidence for a correlation between the enzymatic activity of RocG and its ability to inactivate GltC, and thus give insights into the mechanism that couples the enzymatic activity of a trigger enzyme to its regulatory function.

Authors: Katrin Gunka, , Fabian M Commichau, Christina Herzberg, Cecilia Rodrigues, Lorraine Hewitt, , Jörg Stülke

Date Published: 22nd Feb 2010

Publication Type: Not specified

Powered by
(v.1.15.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH