SEEK ID: https://fairdomhub.org/people/956
Location: Norway
ORCID: https://orcid.org/0000-0002-1702-7379
Joined: 1st Sep 2017
Expertise: Not specified
Tools: Not specified
Related items
- Programmes (1)
- Projects (3)
- Institutions (1)
- Investigations (0+2)
- Studies (0+8)
- Assays (0+31)
- Data files (0+6)
- Models (1)
- SOPs (0+7)
- Publications (1)
- Presentations (0+3)
- Documents (0+2)
Salmon farming in the future must navigate conflicting and shifting demands of sustainability, shifting feed prices, disease, and product quality. The industry needs to develop a flexible, integrated basis of knowledge for rapid response to new challenges. The Digital Salmon will be an ensemble of mathematical descriptions of salmon physiology, combining mathematics, high-dimensional data analysis, computer science and measurement technology with genomics and experimental biology into a concerted ...
Projects: GenoSysFat, DigiSal, SEEK tutorial for DigiSal, DigiSal-BT8121
Web page: http://tinyurl.com/digisal
Towards the Digital Salmon: From a reactive to a pre-emptive research strategy in aquaculture (DigiSal)
Salmon farming in the future must navigate conflicting and shifting demands of sustainability, shifting feed prices, disease, and product quality. The industry needs to develop a flexible, integrated basis of knowledge for rapid response to new challenges. Project DigiSal will lay the foundations for a Digital Salmon: an ensemble of mathematical descriptions of salmon physiology, combining ...
Programme: The Digital Salmon
Public web page: http://tinyurl.com/digisal
Organisms: Danio rerio, Salmo salar, Oncorhynchus mykiss
A project for the Digital Salmon use case in BT8121 - Transdisciplinary biotechnology - a Digital Life Norway course.
Programme: The Digital Salmon
Public web page: https://www.ntnu.edu/studies/courses/BT8121
Organisms: Not specified
Salmon farmed on modern feeds contains less of the healthy, long-chain fatty acids (EPA and DHA) than before. Up until the turn of the millennium, farmed salmon were fed fish oil as a replacement for their omega-3 rich natural prey. However, fish oil is now a scarce resource, and more than half of the fat in modern feeds comes from plant oils that are inexpensive, but devoid of long-chain omega-3 fatty acids. How can we increase the omega-3 content of salmon on sustainable feeds?
One option is ...
Programme: The Digital Salmon
Public web page: http://tinyurl.com/genosysfat
Organisms: Danio rerio, Salmo salar, Oncorhynchus mykiss
Atlantic salmon (Salmo salar) is the most valuable farmed fish globally and there is much interest in optimizing its genetics and rearing conditions for growth and feed efficiency. Marine feed ingredients must be replaced to meet global demand, with challenges for fish health and sustainability. Metabolic models can address this by connecting genomes to metabolism, which converts nutrients in the feed to energy and biomass, but such models are currently not available for major aquaculture species ...
Creators: Maksim Zakhartsev, Filip Rotnes, Marie Gulla, Ove Oyas, Jesse van Dam, Maria Suarez Diez, Fabian Grammes, Wout van Helvoirt, Jasper Koehorst, Peter Schaap, Yang Jin, Liv Torunn Mydland, Arne Gjuvsland, Sandve Simen, Vitor Martins dos Santos, Jon Olav Vik
Submitter: Jon Olav Vik
Model type: Stoichiometric model
Model format: SBML
Environment: Not specified
Abstract (Expand)
Authors: Maksim Zakhartsev, Filip Rotnes, Marie Gulla, Ove Oyas, Jesse van Dam, Maria Suarez Diez, Fabian Grammes, Robert Hafthorsson, Wout van Helvoirt, Jasper Koehorst, Peter Schaap, Yang Jin, Liv Torunn Mydland, Arne Gjuvsland, Sandve Simen, Vitor Martins dos Santos, Jon Olav Vik
Date Published: 1st Jun 2022
Publication Type: Journal
DOI: 10.1371/journal.pcbi.1010194
Citation: