Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

The respiratory chain of Escherichia coli contains three quinones. Menaquinone and demethylmenaquinone have low midpoint potentials and are involved in anaerobic respiration, while ubiquinone, which has a high midpoint potential, is involved in aerobic and nitrate respiration. Here, we report that demethylmenaquinone plays a role not only in trimethylaminooxide-, dimethylsulfoxide- and fumarate-dependent respiration, but also in aerobic respiration. Furthermore, we demonstrate that demethylmenaquinone serves as an electron acceptor for oxidation of succinate to fumarate, and that all three quinol oxidases of E. coli accept electrons from this naphtoquinone derivative.

Authors: , , Klaas J. Hellingwerf,

Date Published: 1st Sep 2012

Publication Type: Not specified

Abstract (Expand)

Oxygen availability is the major determinant of the metabolic modes adopted by Escherichia coli. Whilst much is known about E. coli gene expression and metabolism under fully aerobic and anaerobic conditions, the intermediate oxygen tensions that are encountered in natural niches are understudied. Here for the first time the transcript profiles of E. coli K-12 across the physiologically significant range of oxygen availabilities are described. These suggested a progressive switch to aerobic respiratory metabolism and a remodeling of the cell envelope as oxygen availability increased. The transcriptional responses were consistent with changes in the abundances of cytochrome bd and bo and outer membrane protein W. The observed transcript and protein profiles result from changes in the activities of regulators that respond to oxygen itself, or to metabolic and environmental signals that are sensitive to oxygen availability (aerobiosis). A probabilistic model (TFinfer) was used to predict the activity of the indirect oxygen-sensing two-component system ArcBA across the aerobiosis range. The model implied that the activity of the regulator ArcA correlated with aerobiosis, but not with the redox state of the ubiquinone pool, challenging the idea that ArcA activity is inhibited by oxidized ubiquinone. Measurement of the amount of phosphorylated ArcA correlated with the predicted ArcA activities and with aerobiosis, suggesting that fermentation product-mediated inhibition of ArcB phosphatase activity is the dominant mechanism for regulating ArcA activity under the conditions used here.

Authors: , , , Eleanor W Trotter, H M Shahzad Asif, Guido Sanguinetti, , ,

Date Published: 22nd Jan 2011

Publication Type: Not specified

Powered by
(v.1.15.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH