Abstract (Expand)
Background: The current COVID-19 pandemic has led to a surge of research activity. While this research provides important insights, the multitude of studies results in an increasing segmentation of … information. To ensure comparability across projects and institutions, standard datasets are needed. Here, we introduce the "German Corona Consensus Dataset" (GECCO), a uniform dataset that uses international terminologies and health IT standards to improve interoperability of COVID-19 data. Methods: Based on previous work (e.g., the ISARIC-WHO COVID-19 case report form) and in coordination with experts from university hospitals, professional associations and research initiatives, data elements relevant for COVID-19 research were collected, prioritized and consolidated into a compact core dataset. The dataset was mapped to international terminologies, and the Fast Healthcare Interoperability Resources (FHIR) standard was used to define interoperable, machine-readable data formats. Results: A core dataset consisting of 81 data elements with 281 response options was defined, including information about, for example, demography, anamnesis, symptoms, therapy, medications or laboratory values of COVID-19 patients. Data elements and response options were mapped to SNOMED CT, LOINC, UCUM, ICD-10-GM and ATC, and FHIR profiles for interoperable data exchange were defined. Conclusion: GECCO provides a compact, interoperable dataset that can help to make COVID-19 research data more comparable across studies and institutions. The dataset will be further refined in the future by adding domain-specific extension modules for more specialized use cases.
Authors: Julian Sass, Alexander Bartschke, Moritz Lehne, Andrea Essenwanger, Eugenia Rinaldi, Stefanie Rudolph, Kai Uwe Heitmann, Joerg Janne Vehreschild, Christof von Kalle, Sylvia Thun
Date Published: 29th Jul 2020
Publication Type: Journal