Publications

What is a Publication?
5 Publications visible to you, out of a total of 5

Abstract (Expand)

Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in 'transcription traffic jams' on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes.

Authors: , , M. Herber, L. Attaiech, , , S. Klumpp, ,

Date Published: 6th Sep 2014

Publication Type: Not specified

Abstract (Expand)

How cells dynamically respond to fluctuating environmental conditions depends on the architecture and noise of the underlying genetic circuits. Most work characterizing stress pathways in the model bacterium Bacillus subtilis has been performed on bulk cultures using ensemble assays. However, investigating the single cell response to stress is important since noise might generate significant phenotypic heterogeneity. Here, we study the stress response to carbon source starvation and compare both population and single cell data. Using a top-down approach, we investigate the transcriptional dynamics of various stress-related genes of B. subtilis in response to carbon source starvation and to increased cell density. Our data reveal that most of the tested gene-regulatory networks respond highly heterogeneously to starvation and cells show a large degree of variation in gene expression. The level of highly dynamic diversification within B. subtilis populations under changing environments reflects the necessity to study cells at the single cell level.

Editor:

Date Published: 4th Oct 2012

Publication Type: Not specified

Abstract (Expand)

How the human pathogen Streptococcus pneumoniae coordinates cell-wall synthesis during growth and division to achieve its characteristic oval shape is poorly understood. The conserved eukaryotic-type Ser/Thr kinase of S. pneumoniae, StkP, previously was reported to phosphorylate the cell-division protein DivIVA. Consistent with a role in cell division, GFP-StkP and its cognate phosphatase, GFP-PhpP, both localize to the division site. StkP localization depends on its penicillin-binding protein and Ser/Thr-associated domains that likely sense uncross-linked peptidoglycan, because StkP and PhpP delocalize in the presence of antibiotics that target the latest stages of cell-wall biosynthesis and in cells that have stopped dividing. Time-lapse microscopy shows that StkP displays an intermediate timing of recruitment to midcell: StkP arrives shortly after FtsA but before DivIVA. Furthermore, StkP remains at midcell longer than FtsA, until division is complete. Cells mutated for stkP are perturbed in cell-wall synthesis and display elongated morphologies with multiple, often unconstricted, FtsA and DivIVA rings. The data show that StkP plays an important role in regulating cell-wall synthesis and controls correct septum progression and closure. Overall, our results indicate that StkP signals information about the cell-wall status to key cell-division proteins and in this way acts as a regulator of cell division.

Authors: Katrin Beilharz, Linda Nováková, Daniela Fadda, Pavel Branny, Orietta Massidda,

Date Published: 21st Mar 2012

Publication Type: Not specified

Abstract (Expand)

During the last few years scientists became increasingly aware that average data obtained from microbial population based experiments are not representative of the behavior, status or phenotype of single cells. Due to this new insight the number of single cell studies rises continuously (for recent reviews see (1,2,3)). However, many of the single cell techniques applied do not allow monitoring the development and behavior of one specific single cell in time (e.g. flow cytometry or standard microscopy). Here, we provide a detailed description of a microscopy method used in several recent studies (4, 5, 6, 7), which allows following and recording (fluorescence of) individual bacterial cells of Bacillus subtilis and Streptococcus pneumoniae through growth and division for many generations. The resulting movies can be used to construct phylogenetic lineage trees by tracing back the history of a single cell within a population that originated from one common ancestor. This time-lapse fluorescence microscopy method cannot only be used to investigate growth, division and differentiation of individual cells, but also to analyze the effect of cell history and ancestry on specific cellular behavior. Furthermore, time-lapse microscopy is ideally suited to examine gene expression dynamics and protein localization during the bacterial cell cycle. The method explains how to prepare the bacterial cells and construct the microscope slide to enable the outgrowth of single cells into a microcolony. In short, single cells are spotted on a semi-solid surface consisting of growth medium supplemented with agarose on which they grow and divide under a fluorescence microscope within a temperature controlled environmental chamber. Images are captured at specific intervals and are later analyzed using the open source software ImageJ.

Authors: , Katrin Beilharz, ,

Date Published: 16th Aug 2011

Publication Type: Not specified

Abstract (Expand)

Segregation of replicated chromosomes is an essential process in all organisms. How bacteria, such as the oval-shaped human pathogen Streptococcus pneumoniae, efficiently segregate their chromosomes is poorly understood. Here we show that the pneumococcal homologue of the DNA-binding protein ParB recruits S. pneumoniae condensin (SMC) to centromere-like DNA sequences (parS) that are located near the origin of replication, in a similar fashion as was shown for the rod-shaped model bacterium Bacillus subtilis. In contrast to B. subtilis, smc is not essential in S. pneumoniae, and Δsmc cells do not show an increased sensitivity to gyrase inhibitors or high temperatures. However, deletion of smc and/or parB results in a mild chromosome segregation defect. Our results show that S. pneumoniae contains a functional chromosome segregation machine that promotes efficient chromosome segregation by recruitment of SMC via ParB. Intriguingly, the data indicate that other, as of yet unknown mechanisms, are at play to ensure proper chromosome segregation in this organism.

Authors: Anita Minnen, Laetitia Attaiech, Maria Thon, Stephan Gruber,

Date Published: 22nd Jun 2011

Publication Type: Not specified

Powered by
(v.1.16.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH