The alcohol content in wine has increased due to external factors in recent decades. In recent reports, some non-Saccharomyces yeast species have been confirmed to reduce ethanol during the alcoholic fermentation process. Thus, an efficient screening of non-Saccharomyces yeasts with low ethanol yield is required due to the broad diversity of these yeasts. In this study, we proposed a rapid method for selecting strains with a low ethanol yield from forty-five non-Saccharomyces yeasts belonging to eighteen species. Single fermentations were carried out for this rapid selection. Then, sequential fermentations in synthetic and natural must were conducted with the selected strains to confirm their capacity to reduce ethanol compared with that of Saccharomyces cerevisiae. The results showed that ten non-Saccharomyces strains were able to reduce the ethanol content, namely, Hanseniaspora uvarum (2), Issatchenkia terricola (1), Metschnikowia pulcherrima (2), Lachancea thermotolerans (1), Saccharomycodes ludwigii (1), Torulaspora delbrueckii (2), and Zygosaccharomyces bailii (1). Compared with S. cerevisiae, the ethanol reduction of the selected strains ranged from 0.29 to 1.39% (v/v). Sequential inoculations of M. pulcherrima (Mp51 and Mp FA) and S. cerevisiae reduced the highest concentration of ethanol by 1.17 to 1.39% (v/v) in synthetic or natural must. Second, sequential fermentations with Z. bailii (Zb43) and T. delbrueckii (Td Pt) performed in natural must yielded ethanol reductions of 1.02 and 0.84% (v/v), respectively.
SEEK ID: https://fairdomhub.org/publications/595
DOI: 10.3390/microorganisms8050658
Projects: CoolWine
Publication type: Journal
Journal: Microorganisms
Citation: Microorganisms 8(5):658
Date Published: 1st May 2020
Registered Mode: by DOI
Views: 1275
Created: 1st Mar 2021 at 13:16
Last updated: 8th Dec 2022 at 17:26
This item has not yet been tagged.
None