Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

UNLABELLED: Modeling of dynamical systems using ordinary differential equations is a popular approach in the field of systems biology. Two of the most critical steps in this approach are to construct dynamical models of biochemical reaction networks for large datasets and complex experimental conditions and to perform efficient and reliable parameter estimation for model fitting. We present a modeling environment for MATLAB that pioneers these challenges. The numerically expensive parts of the calculations such as the solving of the differential equations and of the associated sensitivity system are parallelized and automatically compiled into efficient C code. A variety of parameter estimation algorithms as well as frequentist and Bayesian methods for uncertainty analysis have been implemented and used on a range of applications that lead to publications. AVAILABILITY AND IMPLEMENTATION: The Data2Dynamics modeling environment is MATLAB based, open source and freely available at http://www.data2dynamics.org. CONTACT: andreas.raue@fdm.uni-freiburg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Authors: A. Raue, B. Steiert, M. Schelker, C. Kreutz, T. Maiwald, H. Hass, J. Vanlier, C. Tonsing, L. Adlung, R. Engesser, W. Mader, T. Heinemann, J. Hasenauer, M. Schilling, T. Hofer, E. Klipp, F. Theis, U. Klingmuller, B. Schoberl, J. Timmer

Date Published: 1st Nov 2015

Publication Type: Journal

Abstract (Expand)

Data-based mathematical modeling of biochemical reaction networks, e.g., by nonlinear ordinary differential equation (ODE) models, has been successfully applied. In this context, parameter estimation and uncertainty analysis is a major task in order to assess the quality of the description of the system by the model. Recently, a broadened eigenvalue spectrum of the Hessian matrix of the objective function covering orders of magnitudes was observed and has been termed as sloppiness. In this work, we investigate the origin of sloppiness from structures in the sensitivity matrix arising from the properties of the model topology and the experimental design. Furthermore, we present strategies using optimal experimental design methods in order to circumvent the sloppiness issue and present nonsloppy designs for a benchmark model.

Authors: Christian Tönsing, Jens Timmer, Clemens Kreutz

Date Published: 1st Aug 2014

Publication Type: Not specified

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH