Publications

What is a Publication?
5 Publications visible to you, out of a total of 5

Abstract

Not specified

Authors: Helge Hass, Carolin Loos, Elba Raimúndez-Álvarez, Jens Timmer, Jan Hasenauer, Clemens Kreutz

Date Published: 1st Sep 2019

Publication Type: Journal

Abstract (Expand)

MOTIVATION: A major goal of drug development is to selectively target certain cell types. Cellular decisions influenced by drugs are often dependent on the dynamic processing of information. Selective responses can be achieved by differences between the involved cell types at levels of receptor, signaling, gene regulation or further downstream. Therefore, a systematic approach to detect and quantify cell type-specific parameters in dynamical systems becomes necessary. RESULTS: Here, we demonstrate that a combination of nonlinear modeling with L1 regularization is capable of detecting cell type-specific parameters. To adapt the least-squares numerical optimization routine to L1 regularization, sub-gradient strategies as well as truncation of proposed optimization steps were implemented. Likelihood-ratio tests were used to determine the optimal regularization strength resulting in a sparse solution in terms of a minimal number of cell type-specific parameters that is in agreement with the data. By applying our implementation to a realistic dynamical benchmark model of the DREAM6 challenge we were able to recover parameter differences with an accuracy of 78%. Within the subset of detected differences, 91% were in agreement with their true value. Furthermore, we found that the results could be improved using the profile likelihood. In conclusion, the approach constitutes a general method to infer an overarching model with a minimum number of individual parameters for the particular models. AVAILABILITY AND IMPLEMENTATION: A MATLAB implementation is provided within the freely available, open-source modeling environment Data2Dynamics. Source code for all examples is provided online at http://www.data2dynamics.org/ CONTACT: bernhard.steiert@fdm.uni-freiburg.de.

Authors: B. Steiert, J. Timmer, C. Kreutz

Date Published: 3rd Sep 2016

Publication Type: Not specified

Abstract (Expand)

In systems biology, one of the major tasks is to tailor model complexity to information content of the data. A useful model should describe the data and produce well-determined parameter estimates and predictions. Too small of a model will not be able to describe the data whereas a model which is too large tends to overfit measurement errors and does not provide precise predictions. Typically, the model is modified and tuned to fit the data, which often results in an oversized model. To restore the balance between model complexity and available measurements, either new data has to be gathered or the model has to be reduced. In this manuscript, we present a data-based method for reducing non-linear models. The profile likelihood is utilised to assess parameter identifiability and designate likely candidates for reduction. Parameter dependencies are analysed along profiles, providing context-dependent suggestions for the type of reduction. We discriminate four distinct scenarios, each associated with a specific model reduction strategy. Iterating the presented procedure eventually results in an identifiable model, which is capable of generating precise and testable predictions. Source code for all toy examples is provided within the freely available, open-source modelling environment Data2Dynamics based on MATLAB available at http://www.data2dynamics.org/, as well as the R packages dMod/cOde available at https://github.com/dkaschek/. Moreover, the concept is generally applicable and can readily be used with any software capable of calculating the profile likelihood.

Authors: T. Maiwald, H. Hass, B. Steiert, J. Vanlier, R. Engesser, A. Raue, F. Kipkeew, H. H. Bock, D. Kaschek, C. Kreutz, J. Timmer

Date Published: 3rd Sep 2016

Publication Type: Not specified

Abstract (Expand)

Data-based mathematical modeling of biochemical reaction networks, e.g., by nonlinear ordinary differential equation (ODE) models, has been successfully applied. In this context, parameter estimation and uncertainty analysis is a major task in order to assess the quality of the description of the system by the model. Recently, a broadened eigenvalue spectrum of the Hessian matrix of the objective function covering orders of magnitudes was observed and has been termed as sloppiness. In this work, we investigate the origin of sloppiness from structures in the sensitivity matrix arising from the properties of the model topology and the experimental design. Furthermore, we present strategies using optimal experimental design methods in order to circumvent the sloppiness issue and present nonsloppy designs for a benchmark model.

Authors: Christian Tönsing, Jens Timmer, Clemens Kreutz

Date Published: 1st Aug 2014

Publication Type: Not specified

Abstract (Expand)

Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.

Authors: J. Bachmann, A. Raue, M. Schilling, M. E. Bohm, C. Kreutz, D. Kaschek, H. Busch, N. Gretz, W. D. Lehmann, J. Timmer, U. Klingmuller

Date Published: 2011

Publication Type: Not specified

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH