Publications

What is a Publication?
2 Publications matching the given criteria: (Clear all filters)
Published year: 20192

Abstract (Expand)

Protein data over circadian time scale is scarce for clock transcription factors. Further work in this direction is required for refining quantitative clock models. However, gathering highly resolved dynamics of low-abundance transcription factors has been a major challenge in the field. In this work we provide a new tool that could help this major issue. Bioluminescence is an important tool for gathering data on circadian gene expression. It allows data collection over extended time periods for low signal levels, thanks to a large signal-to-noise ratio. However, the main reporter so far used, firefly luciferase (FLUC), presents some disadvantages for reporting total protein levels. For example, the rapid, post-translational inactivation of this luciferase will result in underestimation of protein numbers. A more stable reporter protein could in principle tackle this issue. We noticed that NanoLUC might fill this gap, given its reported brightness and the stability of both enzyme and substrate. However, no data in plant systems on the circadian time scale had been reported.

Authors: Uriel Urquiza-García, Andrew J. Millar

Date Published: 1st Dec 2019

Publication Type: Journal

Abstract (Expand)

We assessed mechanistic temperature influence on flowering by incorporating temperature-responsive flowering mechanisms across developmental age into an existing model. Temperature influences the leaf production rate as well as expression of FLOWERING LOCUS T (FT), a photoperiodic flowering regulator that is expressed in leaves. The Arabidopsis Framework Model incorporated temperature influence on leaf growth but ignored the consequences of leaf growth on and direct temperature influence of FT expression. We measured FT production in differently aged leaves and modified the model, adding mechanistic temperature influence on FT transcription, and causing whole-plant FT to accumulate with leaf growth. Our simulations suggest that in long days, the developmental stage (leaf number) at which the reproductive transition occurs is influenced by day length and temperature through FT, while temperature influences the rate of leaf production and the time (in days) the transition occurs. Further, we demonstrate that FT is mainly produced in the first 10 leaves in the Columbia (Col-0) accession, and that FT accumulation alone cannot explain flowering in conditions in which flowering is delayed. Our simulations supported our hypotheses that: (i) temperature regulation of FT, accumulated with leaf growth, is a component of thermal time, and (ii) incorporating mechanistic temperature regulation of FT can improve model predictions when temperatures change over time.

Authors: Hannah A Kinmonth-Schultz, Melissa J S MacEwen, Daniel D Seaton, Andrew J Millar, Takato Imaizumi, Soo-Hyung Kim

Date Published: 2019

Publication Type: Journal

Powered by
(v.1.17.0)
Copyright © 2008 - 2025 The University of Manchester and HITS gGmbH