Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

The intra- and extracellular concentrations of 16 metabolites were measured in chemostat (D = 0.1 h−1) anaerobic cultures of the yeast Saccharomyces cerevisiae CEN.PK-113-7D growing on minimal medium. Two independent sampling workflows were employed: (i) conventional cold methanol quenching and (ii) a differential approach. Metabolites were quantified in different sample fractions (total, extracellular, quenching supernatant, methanol/water extract and pellet) in order to derive their mass balance. The differential method in combination with absolute metabolite quantification by gas-chromatography with isotope dilution mass spectrometry (GC–IDMS) was used as a benchmark to assess quality of the cold methanol quenching procedure. Quantitative comparison of metabolite concentrations in all fractions collected by different quenching techniques indicates asystematic loss of the total mass of various metabolites in course of the cold methanol quenching. Pellet resulting from the cold methanol quenching besides biomass contains considerable amounts of precipitated inorganic salts from the fermentation media. Quantitative analysis has revealed significant co-precipitation of polar extracellular metabolites together with these salts. This phenomenon is especially significant for metabolites with large extracellular mass-fraction. We report that the co-precipitation is a hitherto neglected phenomenon and concluded that its degree strongly linked to culturing conditions (i.e. media composition) and chemical properties of the particular metabolite. Thus, intracellular metabolite levels measured from samples collected by cold methanol quenching might be uncertain and variably biased due to corruption by described phenomena.

Authors: Maksim Zakhartsev, Oliver Vielhauer, Thomas Horn, Xuelian Yang, Matthias Reuss

Date Published: 1st Apr 2015

Publication Type: Not specified

Abstract (Expand)

We develop a strategic ‘domino’ approach that starts with one key feature of cell function and the main process providing for it, and then adds additional processes and components only as necessary to explain provoked experimental observations. The approach is here applied to the energy metabolism of yeast in a glucose limited chemostat, subjected to a sudden increase in glucose. The puzzles addressed include (i) the lack of increase in ATP upon glucose addition, (ii) the lack of increase in ADP when ATP is hydrolyzed, and (iii) the rapid disappearance of the ‘A’ (adenine) moiety of ATP. Neither the incorporation of nucleotides into new biomass, nor steady de novo synthesis of AMP explains. Cycling of the ‘A’ moiety accelerates when the cell's energy state is endangered, another essential domino among the seven required for understanding of the experimental observations. This new domino analysis shows how strategic experimental design and observations in tandem with theory and modeling may identify and resolve important paradoxes. It also highlights the hitherto unexpected role of the ‘A’ component of ATP.

Editor:

Date Published: 1st Sep 2012

Publication Type: Not specified

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH