Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

Discovering disease-associated genes (DG) is strategic for understanding pathological mechanisms. DGs form modules in protein interaction networks and diseases with common phenotypes share more DGs or have more closely interacting DGs. This prompted the development of Specific Betweenness (S2B) to find genes associated with two related diseases. S2B prioritizes genes frequently and specifically present in shortest paths linking two disease modules. Top S2B scores identified genes in the overlap of artificial network modules more than 80% of the times, even with incomplete or noisy knowledge. Applied to Amyotrophic Lateral Sclerosis and Spinal Muscular Atrophy, S2B candidates were enriched in biological processes previously associated with motor neuron degeneration. Some S2B candidates closely interacted in network cliques, suggesting common molecular mechanisms for the two diseases. S2B is a valuable tool for DG prediction, bringing new insights into pathological mechanisms. More generally, S2B can be applied to infer the overlap between other types of network modules, such as functional modules or context-specific subnetworks. An R package implementing S2B is publicly available at https://github.com/frpinto/S2B.

Authors: Marina L. Garcia-Vaquero, Margarida Gama-Carvalho, Javier De Las Rivas, Francisco R. Pinto

Date Published: 1st Dec 2018

Publication Type: Not specified

Abstract (Expand)

In this review, we present our most recent understanding of key biomolecular processes that underlie two motor neuron degenerative disorders, amyotrophic lateral sclerosis, and spinal muscular atrophy. We focus on the role of four multifunctional proteins involved in RNA metabolism (TDP-43, FUS, SMN, and Senataxin) that play a causal role in these diseases. Recent results have led to a novel scenario of intricate connections between these four proteins, bringing transcriptome homeostasis into the spotlight as a common theme in motor neuron degeneration. We review reported functional and physical interactions between these four proteins, highlighting their common association with nuclear bodies and small nuclear ribonucleoprotein particle biogenesis and function. We discuss how these interactions are turning out to be particularly relevant for the control of transcription and chromatin homeostasis, including the recent identification of an association between SMN and Senataxin required to ensure the resolution of DNA-RNA hybrid formation and proper termination by RNA polymerase II. These connections strongly support the existence of common pathways underlying the spinal muscular atrophy and amyotrophic lateral sclerosis phenotype. We also discuss the potential of genome-wide expression profiling, in particular RNA sequencing derived data, to contribute to unravelling the underlying mechanisms. We provide a review of publicly available datasets that have addressed both diseases using these approaches, and highlight the value of investing in cross-disease studies to promote our understanding of the pathways leading to neurodegeneration.

Authors: M. Gama-Carvalho, M. L Garcia-Vaquero, F. R Pinto, F. Besse, J. Weis, A. Voigt, J. B. Schulz, J. De Las Rivas

Date Published: 6th Jan 2017

Publication Type: Not specified

Powered by
(v.1.15.0-pre)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH