Publications

What is a Publication?
2 Publications visible to you, out of a total of 2

Abstract (Expand)

During the last few years scientists became increasingly aware that average data obtained from microbial population based experiments are not representative of the behavior, status or phenotype of single cells. Due to this new insight the number of single cell studies rises continuously (for recent reviews see (1,2,3)). However, many of the single cell techniques applied do not allow monitoring the development and behavior of one specific single cell in time (e.g. flow cytometry or standard microscopy). Here, we provide a detailed description of a microscopy method used in several recent studies (4, 5, 6, 7), which allows following and recording (fluorescence of) individual bacterial cells of Bacillus subtilis and Streptococcus pneumoniae through growth and division for many generations. The resulting movies can be used to construct phylogenetic lineage trees by tracing back the history of a single cell within a population that originated from one common ancestor. This time-lapse fluorescence microscopy method cannot only be used to investigate growth, division and differentiation of individual cells, but also to analyze the effect of cell history and ancestry on specific cellular behavior. Furthermore, time-lapse microscopy is ideally suited to examine gene expression dynamics and protein localization during the bacterial cell cycle. The method explains how to prepare the bacterial cells and construct the microscope slide to enable the outgrowth of single cells into a microcolony. In short, single cells are spotted on a semi-solid surface consisting of growth medium supplemented with agarose on which they grow and divide under a fluorescence microscope within a temperature controlled environmental chamber. Images are captured at specific intervals and are later analyzed using the open source software ImageJ.

Authors: , Katrin Beilharz, ,

Date Published: 16th Aug 2011

Publication Type: Not specified

Abstract (Expand)

Bacteria have developed an impressive ability to survive and propagate in highly diverse and changing environments by evolving phenotypic heterogeneity. Phenotypic heterogeneity ensures that a subpopulation is well prepared for environmental changes. The expression bet hedging is commonly (but often incorrectly) used by molecular biologists to describe any observed phenotypic heterogeneity. In evolutionary biology, however, bet hedging denotes a risk-spreading strategy displayed by isogenic populations that evolved in unpredictably changing environments. Opposed to other survival strategies, bet hedging evolves because the selection environment changes and favours different phenotypes at different times. Consequently, in bet hedging populations all phenotypes perform differently well at any time, depending on the selection pressures present. Moreover, bet hedging is the only strategy in which temporal variance of offspring numbers per individual is minimized. Our paper aims to provide a guide for the correct use of the term bet hedging in molecular biology.

Authors: , Patsy Haccou,

Date Published: 21st Jan 2011

Publication Type: Not specified

Powered by
(v.1.14.2)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH