Publications

What is a Publication?
1 Publication visible to you, out of a total of 1

Abstract (Expand)

Tissues use feedback circuits in which cells send signals to each other to control their growth and survival. We show that such feed- back circuits are inherently unstable to mutants that misread the signal level: Mutants have a growth advantage to take over the tissue, and cannot be eliminated by known cell-intrinsic mecha- nisms. To resolve this, we propose that tissues have biphasic responses in which the signal is toxic at both high and low levels, such as glucotoxicity of beta cells, excitotoxicity in neurons, and toxicity of growth factors to T cells. This gives most of these mutants a frequency-dependent selective disadvantage, which leads to their elimination. However, the biphasic mechanisms create a new unstable fixed point in the feedback circuit beyond which runaway processes can occur, leading to risk of diseases such as diabetes and neurodegenerative disease. Hence, glucotoxicity, which is a dangerous cause of diabetes, may have a protective anti- mutant effect. Biphasic responses in tissues may provide an evolu- tionary stable strategy that avoids invasion by commonly occurring mutants, but at the same time cause vulnerability to disease.

Authors: Omer Karin, Uri Alon

Date Published: 26th Jun 2017

Publication Type: Not specified

Powered by
(v.1.16.0)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH