Neural network (NN) training data set preparation
After segmentation, the 2D slices were then converted to matrices through Numpy library.30 As the cells needed to be represented as 3D images, 2D matrices of signal intensity gray value of each z-plane were stacked together as 3D matrices. We standardized individual cell image size to 20×50×50 pixels by adding rows and columns of 0s to the cell images that had dimensions smaller than the standard size. Finally, the 2D matrices were stacked together as 3D matrices representing 3D images of individual cells. 
For use in a rigorous test of the model’s generalizing ability, 408 cells from the original 4852 single-cell 3D images were set aside before image augmentation. These cells were entirely from six randomly-chosen original z-stack images of spheroids not used in training, validation, or prior testing, therefore making them completely separate from the training process. The model’s accuracy was then assessed from its performance on these 408 set aside cells (Table S1). We next prepared the images for the training process. The remaining 4444 3D single-cell images were first curated by removing all images for which the two methods used to determine whether a cell is a cancer cell or a fibroblast disagreed (undetermined ground truth cells). Only 277 out of 4444 segmented cells (constituting 6.2% discordance and 93.8% accordance) had uncertain ground-truth labels, often due to weak fluorescence in either the red or green channel. Consequently, we successfully assigned ground-truth labels to 4167 single cells. Next, to ensure the data is not biased toward either cell type, we trained on equal numbers of each cell type by randomly selecting a number of fibroblasts that matches the number of tumor cells. Therefore, we randomly selected 1144 tumor cells from a pool of 3023 and included all 1144 fibroblasts. We augmented this dataset by rotating the selected cells four times to ensure an equal representation of fibroblast and tumor cells in the training set. The 2288 images were rotated 0°, 90°, 180°, and 270° as a form of image augmentation to increase the amount of data available to use 4-fold. The resulting 9152 3D images were then arbitrarily divided into training, validation, and testing cells. The training cells are the cells that the model “learns” from, optimizing the weights it uses to classify images into cell types. The validation cells are used as a metric to determine how well the model will be able to generalize on the cells it has not seen already, during training. The strict testing cells are to evaluate the model’s final performance on cells it did not see during training. Each 3D matrix representing a 3D cell image from each of the 3 data image types (Reflection, transmission, DAPI) was stacked together into a 4D matrix to feed into the machine learning program. 
Creating the CNN models
We developed our models, and trained and evaluated their performances using the Keras and Tensorflow libraries.31 We hypothesized that the order of the randomized image sets presented to Keras and Tensorflow might influence the rate of training. Therefore, we designed a bootstrapping program that automated the training under the same parameters, each with a different set of images for their training, validation, and testing datasets (Table S1). For each training run, we put each image in the training, validation, and testing datasets into a different random order before starting the multiple training epochs for that data set. We performed 25 training runs, selecting the model with the best validation loss.
The CNN model was built on a modified version of the VGG-16 architecture.18 The CNN model was a traditional 3D CNN with a batch normalization layer, a ReLU activation function layer, an Adam optimizer, and a Max Pooling 3D layer (Figure 1D). The training run for this machine learning model created our best-performing NN, which we dubbed K1. 
We used the “Adam” optimizer, with an initial learning rate of 0.0001, an exponential scheduled learning rate decay, a batch size of 16, a kernel size of 5, a pooling size of (2,2,2), and 16 CNN filters.
The loss function was set to the categorical cross-entropy cost function: 

To evaluate the performance of our classification method, we compared the model’s prediction to ground truth cell type for each segmented cell. Then, we recapitulate a 3D image of the original multicellular image using machine-learning classification and the 3D manager plugin by assigning the classification from the NN to each ROI and placing them in the 3D coordination within the original image to recapitulate the 3D original image. 

