
ProgressCurve_TimeCourse

February 1, 2022

Written by G. Gygli.

Contact gudrun.gygli@kit.edu in case of questions.

Made available without any warranty under a CC-By license. This script uses Python 3

1 A time-course experiment
This script aims to help you understand how to optimize the design of a time-course experiments
for single-substrate, single-enzyme catalyzed reactions.

Input: estimates of Km and vmax and indicate the enzyme concentration concentration (E0) and
substrate concentration (s0) you are planning to use.
If you have no estimates to give, try the experiment with the suggested initial values.

This notebook is heavily based on the work by Stroberg and Schnell, and their recommendations
for the design of time course experiments: https://doi.org/10.1016/j.bpc.2016.09.004

In order for both Km and vmax to be derived from substrate progress curve measurements: 1. s0
must be within approximately an order of magnitude of Km.
a. If s0 >> Km, a linear fit to the initial velocity will yield vmax, but provide no information about
Km.
b. If s0 << Km, the ratio of vmax to Km, but neither parameter independently can be determined.
2. E0 must be smaller than the Michaelis constant, that is E0

Km
<< 1 3. Data points should be

collected around the time point where the time course curvature is at it highest. 4. E0 must be
smaller than s0. 5. E0 should be between 0.25 and 25 Km.

Finally, note that the equations used to simulate data are:
s(t)
s0

= (s0
Km

)−1W [s0
Km

e(
s0
Km − V

Km t)]

(which does not take into account E0).

And the the approximation taking into account E0:

s(t)
s0

≈ e
− kcate0t

Km (1− s0
kcate0

t)

We will perform steps with this notebook:

Step 1: Import packages and define functions

Step 2: Provide input parameters - Enzyme reaction parameters - Experimental conditions param-
eters

1

Step 3: Simulate and plot data

Step 4: Now it is up to you

NOTE that your enzyme might behave completely different than in this example due to a more
complex reaction mechanism!

1.0.1 Step 1: Import packages and define functions

[1]: # Here, we import all the python packages we need to run this script.
in the unlikely case they are not installed on your computer, this might help:
↪→

https://jakevdp.github.io/blog/2017/12/05/
↪→installing-python-packages-from-jupyter/

accessed 04.10.21
import pandas
from scipy.special import lambertw
from scipy.optimize import curve_fit
import numpy as np
import scipy
import warnings
from scipy.optimize import OptimizeWarning
import matplotlib.pyplot as plt

function to model
def Srt_schnell(t, Km: float, Vmax: float):
print("t,Km,Vmax",t,Km,Vmax)

E = np.exp((s0/Km)-(Vmax/Km)*t)
L = np.abs(lambertw((s0/Km)*E)) # this apparently can be complex which␣
↪→can cause Errors

- the initial valuesgiven in the example below do not suffer form this␣
↪→problem, in case you

run into this problems, try using the line below instead,
where the output of the lambertw function is converted into an absolute␣

↪→value (using np.abs())
L = lambertw((s0/Km)*E) # this apparently can be complex which can cause␣

↪→Errors
y = pow((s0/Km),-1)*L
return y

def Srt_enzymeconcentrationdependent(t,E0, Km: float, Vmax: float):
kcat=Vmax/E0
y = np.exp((-(kcat*t*E0)/Km)*(1 - (s0/(kcat*E0*t))))
return y

2

1.1 Step 2. Provide input parameters
1.1.1 2.1: Enzyme reaction parameters

Here, you can give an estimate of the enzyme reaction parameters Km and vmax for a single-
substrate, single-enzyme catalyzed reaction. These parameters are needed to model data
using the Michaelis-Menten equation, and can be adjusted as you progress with your experiments.

[2]: vmax = 10 # units: �M/s, initial value: 10
Km = 100 # units: �M, initial value: 100

[3]: # we will be using a randon noise generator to include some variation in our␣
↪→simulated data

fixing the seed for the random noise generation to always get the same result.
↪→

comment this line if you want to always get different data.
np.random.seed(1) # initial value: 1
noiselevelMM controls how "noisy" your fake data will be, but it has not real␣
↪→meaning for your actual experiment.

noiselevelMM = 1 # initial value: 1

1.1.2 2.2 Experimental conditions parameters

Choose how long you want to follow the reaction, i.e. how long your experiment should take by
setting the length of t (units in the example are minutes, this obviously has consequences on the
units of vmax, and the x-axis in the plot). Units must be manually verified and adjusted if changes
are made…

Note that besides t you also MUST give a starting concentration of substrate (s0) and a starting
concentration of enzyme (E0).

[4]: t = list(range(0, 100,5)) # units: seconds, initial value: 100
note: this line creates a list (array), filled with values starting from 0␣
↪→and ending with 100, with a step of 5:

0,5,10,...,100
s0 = 200 # units: �M, initial value: 200
E0 = 25 # units: �M, initial value: 25

1.2 Step 3: Simulate and plot data
Now, run all the code below to see what data you can expect to obtain for the input parameters
you gave.

This is where the data are simulated and plotted. Depending on how the plot looks, you may want
to adjust t , s0 and E0.

Note that vmax influences how quickly the reaction is over. Because vmax is a property of the
enzyme, we need to shorten t for high vmax, and lengthen t for low vmax.

The approximation used to simulate data taking into account E0 leads to unrealistic behaviour for
small t s: in the beginning of your simulated experiment, you can observe substrate concentrations

3

that are >> s0 (uncomment line 31 in the code below to fully see the effect). This is certainly not
realistic, but shows you that the curvature of your data can change in this case.

[5]: # some preparations:
v0 = t.copy() # initialize the array, the values will be overwritten later
v1 = t.copy() # initialize the array, the values will be overwritten later

fixing the seed for the random noise generation to always get the same result.
↪→

comment this line if you want to always get different data.
np.random.seed(1) # initial value: 1

#create a figure with satisfactory dimensions and resolution:
fig = plt.figure(figsize=[5,3], dpi=500)

This code is repeated again and again below.
It is not put into a function to enable beginners in Python programming to␣
↪→understand what is happening.

for i, value in enumerate(t):
print(i)

if i==0:
v0[i]=s0

else:
v0[i] = s0*Srt_schnell(value,Km,vmax)
noise = noiselevelMM*(np.random.random(1)-0.5)
data_random = v0[i] + noise

for i, value in enumerate(t):
if i==0:

v1[i]=s0
else:

#using your E0 given above as input
v1[i] = s0*Srt_enzymeconcentrationdependent(value,E0,Km,vmax)
noise = noiselevelMM*(np.random.random(1)-0.5)
data_random = v1[i] + noise

plt.ylim(ymax = s0+(s0/10), ymin = 0-(s0/10))
fixing the axis so that in case of very bad initial parameter choices we do␣
↪→not get confused by [S]>>[S0]

plt.scatter(t,v0,label="not taking [E_0] into account", facecolors='none',␣
↪→edgecolors='black',s=20)

plt.scatter(t,v1,label='using [E_0]={}'.format(E0), facecolors='none',␣
↪→edgecolors='yellow',s=20)

plt.title("A simulated time course experiment", fontsize=14)
plt.legend(loc='upper right')

4

plt.ylabel('[S] (\u03BC)')
plt.xlabel('time (s)')

C:\Users\Gudrun\anaconda3\lib\site-packages\numpy\core_asarray.py:138:
ComplexWarning: Casting complex values to real discards the imaginary part

return array(a, dtype, copy=False, order=order, subok=True)

[5]: Text(0.5, 0, 'time (s)')

If we now check if we fulfill the criteria by Stroberg and Schnell
(https://doi.org/10.1016/j.bpc.2016.09.004), we see that there are some issues to deal with:

1. The s0 must be within approximately an order of magnitude of the Michaelis constant.
TRUE: s0 = 200 �M, Km = 100 �M

2. E0/Km << 1 TRUE: E0=25 -> 25/100 << 1

3. Data points should be collected around the time point where the time course curvature is
at it highest. FALSE: we need to sample better by reducing the stepsize for our list called
“time”.

4. E0 must be smaller than s0. TRUE E0 = 25 �M < s0 = 200 �M

5. E0 should be between 0.25 and 25 Km. TRUE

1.3 Step 4: Now it is up to you
you can try what happens if you adjust E0, s0 and t in the code below. Make sure to adjust the
units and info in the plot axes and legend.

5

[6]: t = list(range(0, 200)) # units: seconds (?)
note: this line creates a list (array) filled with 100 elements, starting␣
↪→from 0 and ending with 100

s0 = 100 # units: �M (?)
E0 = 1 # units: �M (?)

some preparations:
v0 = t.copy() # initialize the array, the values will be overwritten later
v1 = t.copy() # initialize the array, the values will be overwritten later

fixing the seed for the random noise generation to always get the same result.
↪→

comment this line if you want to always get different data.
np.random.seed(1) # initial value: 1

#create a figure with satisfactory dimensions and resolution:
fig = plt.figure(figsize=[5,3], dpi=500)

This code is repeated again and again below.
It is not put into a function to enable beginners in Python programming to␣
↪→understand what is happening.

for i, value in enumerate(t):
print(i)

if i==0:
v0[i]=s0

else:
v0[i] = s0*Srt_schnell(value,Km,vmax)
noise = noiselevelMM*(np.random.random(1)-0.5)
data_random = v0[i] + noise

for i, value in enumerate(t):
if i==0:

v1[i]=s0
else:

#using your E0 given above as input
v1[i] = s0*Srt_enzymeconcentrationdependent(value,E0,Km,vmax)
noise = noiselevelMM*(np.random.random(1)-0.5)
data_random = v1[i] + noise

plt.ylim(ymax = s0+(s0/10), ymin = 0-(s0/10))
#fixing the axis so that in case of very bad initial parameter choices we do␣
↪→not get confused

plt.scatter(t,v0,label="not taking [E_0] into account", facecolors='none',␣
↪→edgecolors='black',s=20)

plt.scatter(t,v1,label='using [E_0]={}'.format(E0), facecolors='none',␣
↪→edgecolors='yellow',s=20)

6

plt.title("Another simulated time course experiment", fontsize=14)
plt.legend(loc='upper right')

plt.ylabel('[S] (???)')
plt.xlabel('time (???)')

[6]: Text(0.5, 0, 'time (???)')

[]:

7

	A time-course experiment
	Step 1: Import packages and define functions
	Step 2. Provide input parameters
	2.1: Enzyme reaction parameters
	2.2 Experimental conditions parameters

	Step 3: Simulate and plot data
	Step 4: Now it is up to you

