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1 Motivations and Objectives

The standard operating procedure (SOP) for applying the most widely used|[1]
local and global sensitivity analysis methods is described here. They can be
used for detecting non influential parameters and, some of them, also their
interactions in non linear dynamical models. Moreover, a parameter ranking
based on these measures can be established which allows the prioritization
of parameters that can be subsequently estimated using robust global opti-
mization methods [2].

2 Sensitivity analysis methods

Local sensitivities provide the slope of the calculated model output in the
parameter space at a given set of nominal values considered for the parame-
ters so the behavior of the response function is described only locally in the
input space. Moreover, preliminary experiments and model calibration tests
should be carried out in order to obtain a first guess for the parameter values
and an iterative scheme involving both steps is required in order to study the
model sensitivity. In addition, these methods are linear thus they are not
sufficient for dealing with complex models, especially those in which there
are nonlinear interactions between parameters.

In contrast, global sensitivity analysis (GSA) methods evaluate the effect
of a parameter while all other parameters are varied simultaneously, thus
accounting for interactions between parameters without depending on the
stipulation of a nominal point (they explore the entire range of each parame-
ter). The most widely used methods in GSA are FAST and extended FAST,
the Morris method and its adaptations and the Sobol” method [3] considered
as one of the more powerful despite its high computational cost.
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2.1 Numerical methods for the calculation of local sen-
sitivity indices

Local sensitivity coefficients are the partial derivatives of the model state

variables to the model parameters evaluated at the normal operating point

where all the parameters have their nominal values.

Considering the case of ODEs, a popular statement is the so-called state-
space formulation:

#(p,t) = fle(p,t), u(t), pl, x(0) = o, (1)

y(p,t) = glz(p,t), u(p,t),p] (2)

where x is the vector of N, state variables and p the vector of n model
parameters. Note that f specify the model, u specifies the vector of inputs
(i.e. for a particular experiment) and y the vector of N, measured states.
An experiment is specified by the initial conditions z(0), the inputs u chosen
among a set of possible inputs U and the observations y. Note that the inputs
can be time-dependent. Then the sensitivity coefficients of the measured
states that form the sensitivity matrix are:
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They are several numerical methods for calculating the local sensitivity in-
dices although the computed values should be the same among the precision
of the considered method. The decoupled direct method (DDM) has proven
to be the best general method for the numerical calculation of local sensitivi-
ties [4]. One of the best known implementations of this method is ODESSA,
a package of FORTRAN routines for simultaneous solution of ordinary dif-
ferential equations and the associated fist-order parametric sensitivity equa-
tions, developed by [5]. ODESSA is a modification of the initial-value solver
LSODE, and is the one recommended in this SOP.

Absolute sensitivity functions (Eq. 3) are useful for calculating errors due
to parameter variations and for assessing the times at which a parameter has
its greatest or least effect. However, absolute sensitivity functions are not
normalized and they are not useful for comparing the effects of different
parameters with respect to different states, for what we should use relative-
sensitivity functions.




The relative sensitivity of the state y; to variations in the parameter p;
is given by:
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Relative sensitivity functions are formed by multiplying the partial derivative
(the absolute sensitivity function) by the nominal value of the parameter
and dividing by the value of the function. They are ideal for comparing
parameters, because they are dimensionless, normalized functions. However,
the relative-sensitivity function presents division by zero problems when y;
is equal to zero and gives undue weight to the response if it is small.

2.2 Sobol’ global sensitivity indices

The method of global sensitivity indices developed by Sobol’ is the most
established among the variance-based methods. The method is based on
the ANOVA decomposition of the variance of the model output. A detailed
description of the method can be found in [6].

Sobol’ define two type of indices: SI; that accounts only for the effect
of the parameters p; and SII that also accounts for the interactions of the
parameter p; with the rest of the parameters. He found a elegant way of
computing these indices directly from the model output y;(p) being p; the
set of parameters excluding p;:
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Using these indices a parameter ranking can be established.
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2.3 Derivative based Global Sensitivity Measures

Kucherenko and co-workers [7] presented the derivative based global sensi-
tivity measures (DGSM) based on averaging local derivatives using Quasi
Monte Carlo sampling methods. They applied this technique to a set of
explicit functions showing that it is much more accurate than the Morris



method. Moreover, they demonstrated that there is a link between these
measures and the Sobol’ sensitivity indices.

In [8], these measures were extended in order to be able to handle ordinary
differential equations (ODEs). The details of this methodology are described
below.

Consider a model described by a set of ODEs, f(p), where p = {p;} is a
vector of parameters defined in the unit hypercube H" (0 < p; < 1,i =1,...,n).
Local sensitivity measures are based on the partial derivatives of the states
y; (3). Sensitivity measures E;; (p*) depend on a nominal point and they
change with a change of p*. This deficiency can be overcome by averaging
E; ; (p*) over the parameter space H". Such a measure can be defined as:

M; :/ E; jdp (7)

Another measure, which is the variance of M, ;, is also considered
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Combining Mi,j and Si,j a new measure @i,j can be introduced
Gij =37, + M}, = /H E? dp (10)

For a single parameter p; or a number of parameters b in a subset we can
define the so called “alternative global sensitivity estimator”, G}, as
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The main advantage of this index is that it is able to handle groups of pa-
rameters and that it is normalized between zero and one allowing to compare
the sensitivity of a parameter with respect to different outputs.
Non-monotonic functions have regions of positive and negative values of
partial derivatives E; ; (p*), hence due to the effect of averaging values M, ;

(11)
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can be very small or even zero: i.e. for a symmetrical at a middle point
(p = 0.5) function M, ; = 0. To avoid such situations measures based on the
absolute value of |E; ;(p*)| can be used:

MZ]‘:/H |Ei,j|dp (12)

1/2
Sk —rx \ 2
2ij = |:/H" (|E”LJ| - M”) dp} (13)

Similar measures were introduced in [9] within the framework of the Morris
method. C_J‘ij does not present this problem since it is the result of the
integration of the squared local sensitivity over the parameter space. Using an
analogy with variance based global sensitivity measures, the set of measures
J\Z/{fj, i;ﬁj and G;{j are called derivative based global sensitivity measures
(DGSM).

It has been concluded in [7] that Gﬁj is a better proxy for S]gj than ]\Zfzj,
so this is the measure recommended for the ranking of parameters.

2.4 Computational algorithms for calculation of inte-
grals

Calculation of Sobol” indices and DGSM is based on the evaluation of a series
of integrals (those involved in Eq. (5-6) and Eq. (11) respectively) that can
be presented in the following generic form:

If]= i f(p)dp (14)

It is assumed that function f(p) is integrable in the n-dimensional unit hy-
percube H".

Classical grid methods become inefficient in high-dimensions because of
the “curse of dimensionality” (exponential grows of the required integrand
evaluations). Monte Carlo methods do not depend on the dimensionality and
are effective in high dimensional integrations. However, the efficiency of MC
methods is determined by the properties of random numbers. It is known
that random number sampling is prone to clustering: for any sampling there
are always empty areas as well as regions in which random points are wasted
due to clustering. As new points are added randomly, they do not necessarily
fill the gaps between already sampled points.



A higher rate of convergence can be obtained by using deterministic uni-
formly distributed sequences also known as low-discrepancy sequences (LDS)
instead of pseudo-random numbers. Methods based on the usage of such se-
quences are known as Quasi Monte Carlo (QMC) methods.

LDS are specifically designed to place sample points as uniformly as pos-
sible. Unlike random numbers, successive LDS points “know” about the po-
sition of previously sampled points and “fill” the gaps between them. LDS
are also known as quasi random numbers. The QMC algorithm for the eval-
uation of the integral (14) has a form

I = %2 7@ (15)

where ¢; is a set of LDS points uniformly distributed in a unit hypercube
H", ¢ = (g}, q}")-

There are a few well-known and commonly used LDS. Different principles
were used for their construction by Holton, Faure, Sobol’, Niederreiter and
others. Many practical studies have proven that the Sobol’ LDS is in many
aspects superior to other LDS [10].

For the best known LDS the estimate for the rate of convergence Iy — I
is known to be O(In"N)/N. This rate of convergence is much faster than
that for the MC method, although it depends on the dimensionality n.

2.4.1 Numerical computation of the Sobol’ indices

From (5), and applying the QMC algorithm for the evaluation of the integrals,
the Sobol’ indices can be calculated in a straightforward manner according
to the formulas:
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Thus, each Quasi Monte Carlo sample point requires three computations

of the model vy;(p;, pi), y; (P}, pi) and y;(p;, pi’). For the computation of the

Sobol” indices of an entire set of n parameters, using N sample points, the
number of function evaluations is Np = N(n + 2).

ST ; = (16)
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2.4.2 Numerical computation of the DGSM measures

Evaluation of DGSM measures requires calculation of E; ;(p*). In [7] it is
calculated analytically for easy-differentiable functions or numerically using
finite difference approximation:

(DL Doty P+ O, D1 o 1) — 03 (0"
B () = [yi (P, s Y1, 6p+1 Ph) = yi(p)] a8)

where ¢ is a small increment.

Proper selection of scalar 9 is crucial to maintaining acceptable round-
off and truncation error levels. The total number of function evaluation for
calculation of a full set of G¢; is Np = N(n +1).

In order to reduce the number of function evaluations and to increase the
precision of the sensitivity measures, the use of the direct decoupled method
(DDM) to compute the partial derivatives of the ODEs systems is suggested.
The sensitivity equations can be solved with ODESSA simultaneously with
the original system avoiding the difficult task of selecting a proper ¢ and
reducing the number of function evaluations to Np = N.

2.5 Extension to ODEs systems

Since dealing with a systems of ODEs, the sensitivity indices of every ob-
served state variable at each measurement time point with respect to each
of the parameters, are available. In order to summarize all this information,
global sensitivity indices are defined as the average of all the S1I; ; for each

parameter:
Ny Ny

S; = N Nt;;s% &) (19)

The same expression is applicable to ST i M;j, & ; and G’ﬁj.
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