

Extending a dynamic model of trypanosome metabolism

11 111

m

A man

Eduard Kerkhoven e.kerkhoven.1@research.gla.ac.uk

- Introduction to SilicoTryp
 - Current model of glycolysis
- Extension of model
 - Trypanothione
 - Pentose phosphate pathway (PPP)
 - Wiki-page
- Cytosolic PPP
- Glycosomal PPP
 - Phosphate leak
 - Two hypotheses
- Future extension
- Conclusions

- Introduction to SilicoTryp
 - Current model of glycolysis
- Extension of model
 - Trypanothione
 - Pentose phosphate pathway (PPP)
 - Wiki-page
- Cytosolic PPP
- Glycosomal PPP
 - Phosphate leak
 - Two hypotheses
- Future extension
- Conclusions

SilicoTryp

To create a 'Silicon Trypanosome', a comprehensive, experimentbased, multi-scale mathematical model of trypanosome physiology.

Bakker BM, Krauth-Siegel RL, Clayton C, Matthews K, Girolami M, Westerhoff HV, Michels PAM, Breitling R & Barrett MP (2010) Parasitology 137: 1333-41

University of Glasgow, UK

University of Edinburgh, UK

University College London, UK

Rijksuniversiteit Groningen, NL Universitair Medisch Centrum Groningen, NL Universität Heidelberg, DE

Trypanosoma brucei

- Protozoan parasite
- African sleeping sickness in human
- Nagana in cattle
- Fatal if untreated
- Drugs toxicity, difficulties in administration, emerging resistance

Dynamic model of bloodstream form *T. brucei* glycolysis

THE JOURNAL OF BIOLOGICAL CHEMISTRY © 1997 by The American Society for Biochemistry and Molecular Biology, Inc. Vol. 272, No. 6, Issue of February 7, pp. 3207-3215, 1997 Printed in U.S.A.

Glycolysis in Bloodstream Form *Trypanosoma brucei* Can Be Understood in Terms of the Kinetics of the Glycolytic Enzymes*

(Received for publication, July 10, 1996, and in revised form, October 9, 1996)

Barbara M. Bakker‡§, Paul A. M. Michels¶, Fred R. Opperdoes¶, and Hans V. Westerhoff‡

$$v_{\text{PGI}} = V_{\text{fmax}} \cdot \frac{\left[\text{Glc6P}\right]_{g}}{K_{m,\text{Glc6P}}} \cdot \left(1 - \frac{\left[\text{Fru6P}\right]_{g}}{\left[\text{Glc6P}\right]_{g} \cdot K_{eq,\text{PGI}}}\right)}{1 + \frac{\left[\text{Glc6P}\right]_{g}}{K_{m,\text{Glc6P}}} + \frac{\left[\text{Fru6P}\right]_{g}}{K_{m,\text{Fru6P}}}}{\frac{d\left[\text{Fru6P}\right]}{dt}} = v_{\text{PGI}} - v_{\text{PFK}}}$$

• Part of glycolysis is localized in an unique peroxisome-like organelle: the glycosome

- Introduction to SilicoTryp
 - Current model of glycolysis
- Extension of model
 - Trypanothione
 - Pentose phosphate pathway (PPP)
 - Wiki-page
- Cytosolic PPP
- Glycosomal PPP
 - Phosphate leak
 - Two hypotheses
- Future extension
- Conclusions

A unique thiol: trypanothione

- Oxidative stress protection
- Trypanothione = 2x glutathione + spermidine
- Eflornithine is suicide inhibitor of ornithine decarboxylase

Н

Ô

0

Н

COOH

COOH

 H_2N

 H_2N

 Pentose phosphate pathway provides NADPH

> Ν´ Η

SH

SH

Ö

0

Pentose phosphate pathway in bloodstream form *T. brucei*

SilicoTryp wiki

& Eduard Mytalk Mypreferences Mywatchlist Mycontributions Logout

	Page Discussion Read Edit View history 🕶
SilicoTryp	This wiki is work in progress and contains unpublished data. Please treat with confidentiality.
	Phosphofructokinase
Navigation Main page Community portal Current events Recent changes Random page Help	Contents [hide] 1 Chemical equation 2 Rate equation 3 Parameters 4 Equilibrium constant 5 Additional information 6 References
Toolbox	Chemical equation [edit]
What links here Related changes Upload file Special pages Printable version Permanent link	$\begin{aligned} Fructose-6-phosphate_{glycosome} + ATP_{glycosome} & \rightarrow Fructose-1, 6-biphosphate_{glycosome} + ADP_{glycosome} \\ \hline \textbf{Rate equation} & \qquad $
	Parameters [edit]
	$V_{fmax} = 1708 \ nmol.min^{-1}.mg \ of \ cell \ protein^{-1}$ The value was measured for the 2005 version of the model ^[1] (see supplementary information table S1). The assay is described in Misset and Opperdoes (1984) ^[2] (pH=7.6, T=25°C). The reported value is 1708 +/-299 (3) (average +/- SEM from n experiments).
	$Km_{Fru6P} = 0.82 \ mM$ From Cronin et al. (1985) ^[3] . The value was measured at pH=6.7 and reported in table 3: Table 3. Effects of enzyme concentration on the kinetics of fructorse 6-phosphate phosphorylation by phosphorylation kinase from T. brucei Enzyme activity was determined by using the coupled assay for fructose 1,6-bisphosphate forma- tion. [Fru-6-P _{0.5}] is the concentration of fructose 6- phosphate required to give half-maximum velocity, and h is the Hill constant. Concn. of $(\mu g/m)$ (units/mg) (Fru-6-P _{0.5}) $(\mu g/m)$ (units/mg) (max) h $0.100 \ 267 \ 0.82 \ 1.2$ $0.010 \ 267 \ 1.00 \ 1.3$ $0.005 \ 267 \ 1.26 \ 1.3$ $0.005 \ 267 \ 1.26 \ 1.3$

Dynamic modelling under uncertainty: The case of *Trypanosome brucei* energy metabolism

Fiona Achcar PS016

- Introduction to *SilicoTryp*
 - Current model of glycolysis
- Extension of model
 - Trypanothione
 - Pentose phosphate pathway (PPP)
 - Wiki-page
- Cytosolic PPP
- Glycosomal PPP
 - Phosphate leak
 - Two hypotheses
- Future extension
- Conclusions

Cytosolic pentose phosphate pathway

Extension with the cytosolic PPP: an (aspecific) phosphatase?

- Low oxidative stress leads to Glc6P accumulation
- Phosphatase activity would prevent this accumulation
- Initial experiments have confirmed this activity

- Introduction to *SilicoTryp*
 - Current model of glycolysis
- Extension of model
 - Trypanothione
 - Pentose phosphate pathway (PPP)
 - Wiki-page
- Cytosolic PPP
- Glycosomal PPP
 - Phosphate 'leak'
 - Two hypotheses
- Further extension
- Conclusions

Glycosomal pentose phosphate pathway

Extension with the glycosomal PPP: a 'phosphate leak'

- Glycosomal PPP introduces a 'phosphate leak'
- ATP/ADP balance in glycosome is perturbed
- Fluxes decline rapidly \rightarrow non viable state
- Several hypotheses were tested

Hypothesis 1: ATP:ADP antiporter

- Works at 5 mM glucose (blood)
- Glycosomal compartmentation of ATP is essential
- Accumulation of sugar phosphates at 25 mM glucose (culture medium)
- ATP:ADP antiporter mimicks absence of glycosome

Bakker, B.M., *et al.* PNAS 2000 Haanstra, J.R., *et al.* PNAS 2008

Hypothesis 2: Ribokinase

- Ribokinase in reverse restores the ATP:ADP balance
- Ribose is produced from glucose
- Putative *T. brucei* ribokinase enzyme showed activity in both directions
- Knockdown (RNAi) and knockout experiments hint at essentiality

- Introduction to *SilicoTryp*
 - Current model of glycolysis
- Extension of model
 - Trypanothione
 - Pentose phosphate pathway (PPP)
 - Wiki-page
- Cytosolic PPP
- Glycosomal PPP
 - Phosphate leak
 - Two hypotheses
- Future extension
- Conclusions

Inhibition by ribose

- Model suggests sensitivity for ribose concentration
- 5 mM should be lethal
- Not reproducible in lab
- Not unexpected, as we know there are more pathways involved in ribose metabolism

Conclusions

Trypanosoma brucei biology:

- Phosphatase activity prevents accumulation of cytosolic glucose 6-phosphate
- Ribokinase restores phosphate balance in the glycosome

Systems biology:

- Even small extension of a well curated model brings up many questions
- Iterative cycle of experiments and modelling is necessary (and still continuing)
- Stress your model!

Acknowledgements

Prof Mike Barrett

Alan Scott

Dr Barbara Bakker

Prof Rainer Breitling Dr Fiona Achcar (poster PS016)

