AME9.7standardThuNov11131337GMT2010node00738node00739node00740node00741node00742node00743node00744node00745node00746node00747node00748node00749node00750node00751node00752node00753node00754node00755node00756node00757node00758node00759node00760node00761node00762node00763node00764node00765node00766node00767node00768node00769node00770node00771node00772node00773node00774node00775node00776node00777node00778node00779node00780node00781node00782node00783node00784node00785node00786node00787node00788node00789node00790node00791node00792node00793node00794node00795node00796node00797node00798node00799node00800node00802node00808node00811node00812node00813node00814node00815node00816node00817node00818node00819node00820node00821node00822node00823node00824node00825node00826node00827node00828node00829node00830node00831node00903node00904node00905node01006node01007node01008node01009node01010From the LINTUL documentation: "LINTUL1 simulates potential growth of a crop, i.e. its dry matter accumulation under ample supply of water and nutrients in a pest-, disease- and weed-free environment, under the prevailing weather conditions. The rate of dry matter accumulation is a function of irradiation and crop characteristics. The model makes use of the common observation that the crop growth rate under favourable conditions is proportional to the amount of light intercepted (Monteith, 1977). Dry matter production is, therefore, modelled as the product of light interception and a constant light use efficiency. The dry matter produced is partitioned among the various plant organs, using partitioning factors defined as a function of the phenological development stage of the crop. The dry weights of the plant organs are obtained by integration of their growth rates over time. "LINTUL1 requires as input physiological properties of the crop (in this case for spring wheat) and the actual weather conditions at the site, characterized by its geographical latitude, i.e. daily maximum and minimum temperatures and irradiation for each day of the year." This version of the LINTUL has been implemented from the FST version of the model (LINTUL1) available from http://www.cwe.wur.nl/UK/Downloads/LINTUL. This version of the model does not use an input file of daily values for irradiation, min. temperature and max. temperature, but instead sets these inputs to a constant value. The model outputs have been inspected to check that they are reasonable, but the model has not been validated against reference results for the FST version (which in any case appear not to be available on the web site). Version 2 This version 1 is modified to accept the parameter files (especially for verifcation)trueLINTUL: A simple general crop growth model for optimal growing conditionsnonenonenonelintul_v20trueFSTTB_TSUMfilemakearray(1,9)arrayint9makearray19trueFSTTB_FSTfilemakearray(1,9)array19makearray19trueDaily global radiation (MJ/m2/d)1000000000RDD20*10^61201068trueDaily minimum temperature (degreeC)50.0-50.0TMMN81812trueDaily maximum temperature (degreeC)50.0-50.0TMMXNW12112trueDaily global radiation (MJ mXHFc2 dXHFc1)DTRtruefn47RDD/10^61RDD106trueDaily average temperature (degreeC)DAVTMPtruefn480.5*(TMMN+TMMXNW)10.5TMMNTMMXNWtrueAuxiliary variable indicating crop emergence (unspecified)EMERGtruefn49if time()<DOYEM then 0 else 1int0time1DOYEM1trueLeaf area index (m2 m-2)LAItruefn50010truecd8truefn51if time()<DOYEM then 0 elseif LAI==0 then LAII/DELT elseif TSUM<330 and LAI<0.75 then LAI*(exp(RGRL*DTEFF*DELT)-1)/DELT else SLA*GLV10time1DOYEMLAIIDELTLAI0LAIRGRLDTEFFDELT1DELTTSUM330LAI0.75SLAGLVtruecd9truefn52LAI*RDR1LAIRDRtrueRelative death rate of leaves (day-1)RDRtruefn53max(RDRDV,RDRSH)1RDRDVRDRSHtrueRelative death rate of leaves due to ageing (day-1)RDRDVtruefn54if TSUM-TSUMAN<0 then 0 elseif XNW<=element([TBL_XNW],1) then element([TBL_Y],1) elseif XNW<=element([TBL_XNW],2) then (XNW-element([TBL_XNW],1))*(element([TBL_Y],2)-element([TBL_Y],1))/(element([TBL_XNW],2)- element([TBL_XNW],1))+element([TBL_Y],1) elseif XNW<=element([TBL_XNW],3) then (XNW-element([TBL_XNW],2))*(element([TBL_Y],3)-element([TBL_Y],2))/(element([TBL_XNW],3)- element([TBL_XNW],2))+element([TBL_Y],2) elseif XNW<=element([TBL_XNW],4) then (XNW-element([TBL_XNW],3))*(element([TBL_Y],4)-element([TBL_Y],3))/(element([TBL_XNW],4)- element([TBL_XNW],3))+element([TBL_Y],3) elseif XNW<=element([TBL_XNW],5) then (XNW-element([TBL_XNW],4))*(element([TBL_Y],5)-element([TBL_Y],4))/(element([TBL_XNW],5)- element([TBL_XNW],4))+element([TBL_Y],4) elseif XNW<=element([TBL_XNW],6) then (XNW-element([TBL_XNW],5))*(element([TBL_Y],6)-element([TBL_Y],5))/(element([TBL_XNW],6)- element([TBL_XNW],5))+element([TBL_Y],5) elseif XNW<=element([TBL_XNW],7) then (XNW-element([TBL_XNW],6))*(element([TBL_Y],7)-element([TBL_Y],6))/(element([TBL_XNW],7)- element([TBL_XNW],6))+element([TBL_Y],6) elseif XNW<=element([TBL_XNW],8) then (XNW-element([TBL_XNW],7))*(element([TBL_Y],8)-element([TBL_Y],7))/(element([TBL_XNW],8)- element([TBL_XNW],7))+element([TBL_Y],7) else element([TBL_Y],9)10TSUMTSUMAN0elementTBL_Y1XNWelementTBL_XNW1XNWelementTBL_XNW1elementTBL_Y2elementTBL_Y1elementTBL_XNW2elementTBL_XNW1elementTBL_Y1XNWelementTBL_XNW2XNWelementTBL_XNW2elementTBL_Y3elementTBL_Y2elementTBL_XNW3elementTBL_XNW2elementTBL_Y2XNWelementTBL_XNW3XNWelementTBL_XNW3elementTBL_Y4elementTBL_Y3elementTBL_XNW4elementTBL_XNW3elementTBL_Y3XNWelementTBL_XNW4XNWelementTBL_XNW4elementTBL_Y5elementTBL_Y4elementTBL_XNW5elementTBL_XNW4elementTBL_Y4XNWelementTBL_XNW5XNWelementTBL_XNW5elementTBL_Y6elementTBL_Y5elementTBL_XNW6elementTBL_XNW5elementTBL_Y5XNWelementTBL_XNW6XNWelementTBL_XNW6elementTBL_Y7elementTBL_Y6elementTBL_XNW7elementTBL_XNW6elementTBL_Y6XNWelementTBL_XNW7XNWelementTBL_XNW7elementTBL_Y8elementTBL_Y7elementTBL_XNW8elementTBL_XNW7elementTBL_Y7XNWelementTBL_XNW8elementTBL_Y9trueRelative death rate of leaves due to shading (day-1)RDRSHtruefn55min(max(RDRSHM * (LAI-LAICR) / LAICR,0),RDRSHM)1RDRSHMLAILAICRLAICR0RDRSHMtrueTemperature sum (degreeC day)TSUMtruefn56010truecd10truefn57DTEFF*EMERG1DTEFFEMERGtrueDaily effective temperature (degreeC)DTEFFtruefn58max(0,DAVTMP-TBASE)10DAVTMPTBASEtrueFraction of dry matter allocated to the leaves (dimensionless)FLVtruefn59if TSUM<=110 then 0.330 elseif TSUM<=275 then 0.33+0.13*(TSUM-110)/165 elseif TSUM<=555 then 0.46-0.02*(TSUM-275)/280 elseif TSUM<=780 then 0.44-0.30*(TSUM-555)/225 elseif TSUM<=1055 then 0.14-0.14*(TSUM-780)/275 else 010.33TSUM1100.330.13TSUM110165TSUM2750.460.02TSUM275280TSUM5550.440.3TSUM555225TSUM7800.140.14TSUM780275TSUM10550trueIntercepted photosynthetically active radiation (MJ m-2 day-1)PARINTtruefn600.5*DTR*(1-exp(-1*K*LAI))10.5DTR11KLAItrueLight use efficiency (dry matter produced per unit of intercepted photosynthetically active radiation) (g MJ-1)LUEfile3.013.0trueGrowth rate of total crop dry matter (g m-2 day-1)GTOTALtruefn62LUE*PARINT1LUEPARINTtrueFRTTB_TSUMfilemakearray(1,9)arrayint9makearray19trueFRTTB_FRTfilemakearray(1,9)array19makearray19trueFSOTB_TSUMfilemakearray(1,9)arrayint9makearray19trueFSOTB_FSOfilemakearray(1,9)array19makearray19trueGrowth rate of leaf dry matter (g m-2 day-1)GLVtrueDry weight of green leaves (g m-2)WLVGtruefn65WLVI1WLVItrueDry weight of dead leaves (g m-2)WLVDtruefn66010trueDry weight of stems (g m-2)WSTtruefn67010trueDry weight of storage organs (g m-2)WSOtruefn68010trueDry weight of roots (g m-2)WRTtruefn69010truecd11truefn70GTOTAL*FLV11GTOTALFLV1truefn72WLVG*RDR1WLVGRDRtruecd13truefn73GTOTAL*FST11GTOTALFST1truecd14truefn74GTOTAL*FSO11GTOTALFSO1truecd15truefn75GTOTAL*FRT11GTOTALFRT1Linear interpolation using an 9 element array of two element arrays (x, y points)trueFraction of dry matter allocated to the stems (dimensionless)FSTtruefn76if XNW<=element([TBL_XNW],1) then element([TBL_Y],1) elseif XNW<=element([TBL_XNW],2) then (XNW - element([TBL_XNW],1) ) * (element([TBL_Y],2)-element([TBL_Y],1) ) / (element([TBL_XNW],2)-element([TBL_XNW],1) ) + element([TBL_Y],1) elseif XNW<=element([TBL_XNW],3) then (XNW - element([TBL_XNW],2) ) * (element([TBL_Y],3)-element([TBL_Y],2) ) / (element([TBL_XNW],3)-element([TBL_XNW],2) ) + element([TBL_Y],2) elseif XNW<=element([TBL_XNW],4) then (XNW - element([TBL_XNW],3) ) * (element([TBL_Y],4)-element([TBL_Y],3))/ (element([TBL_XNW],4)-element([TBL_XNW],3) ) + element([TBL_Y],3) elseif XNW<=element([TBL_XNW],5) then (XNW - element([TBL_XNW],4) ) * (element([TBL_Y],5)-element([TBL_Y],4))/ (element([TBL_XNW],5)-element([TBL_XNW],4) ) + element([TBL_Y],4) elseif XNW<=element([TBL_XNW],6) then (XNW - element([TBL_XNW],5) ) * (element([TBL_Y],6)-element([TBL_Y],5))/ (element([TBL_XNW],6)-element([TBL_XNW],5) ) + element([TBL_Y],5) elseif XNW<=element([TBL_XNW],7) then (XNW - element([TBL_XNW],6) ) * (element([TBL_Y],7)-element([TBL_Y],6))/ (element([TBL_XNW],7)-element([TBL_XNW],6) ) + element([TBL_Y],6) elseif XNW<=element([TBL_XNW],8) then (XNW - element([TBL_XNW],7) ) * (element([TBL_Y],8)-element([TBL_Y],7))/ (element([TBL_XNW],8)-element([TBL_XNW],7) ) + element([TBL_Y],7) else element([TBL_Y],9)1elementTBL_Y1XNWelementTBL_XNW1XNWelementTBL_XNW1elementTBL_Y2elementTBL_Y1elementTBL_XNW2elementTBL_XNW1elementTBL_Y1XNWelementTBL_XNW2XNWelementTBL_XNW2elementTBL_Y3elementTBL_Y2elementTBL_XNW3elementTBL_XNW2elementTBL_Y2XNWelementTBL_XNW3XNWelementTBL_XNW3elementTBL_Y4elementTBL_Y3elementTBL_XNW4elementTBL_XNW3elementTBL_Y3XNWelementTBL_XNW4XNWelementTBL_XNW4elementTBL_Y5elementTBL_Y4elementTBL_XNW5elementTBL_XNW4elementTBL_Y4XNWelementTBL_XNW5XNWelementTBL_XNW5elementTBL_Y6elementTBL_Y5elementTBL_XNW6elementTBL_XNW5elementTBL_Y5XNWelementTBL_XNW6XNWelementTBL_XNW6elementTBL_Y7elementTBL_Y6elementTBL_XNW7elementTBL_XNW6elementTBL_Y6XNWelementTBL_XNW7XNWelementTBL_XNW7elementTBL_Y8elementTBL_Y7elementTBL_XNW8elementTBL_XNW7elementTBL_Y7XNWelementTBL_XNW8elementTBL_Y9trueFraction of dry matter allocated to the storage organs (dimensionless)FSOtruefn77if XNW<=element([TBL_XNW],1) then element([TBL_Y],1) elseif XNW<=element([TBL_XNW],2) then (XNW - element([TBL_XNW],1) ) * (element([TBL_Y],2)-element([TBL_Y],1) ) / (element([TBL_XNW],2)-element([TBL_XNW],1) ) + element([TBL_Y],1) elseif XNW<=element([TBL_XNW],3) then (XNW - element([TBL_XNW],2) ) * (element([TBL_Y],3)-element([TBL_Y],2) ) / (element([TBL_XNW],3)-element([TBL_XNW],2) ) + element([TBL_Y],2) elseif XNW<=element([TBL_XNW],4) then (XNW - element([TBL_XNW],3) ) * (element([TBL_Y],4)-element([TBL_Y],3))/ (element([TBL_XNW],4)-element([TBL_XNW],3) ) + element([TBL_Y],3) elseif XNW<=element([TBL_XNW],5) then (XNW - element([TBL_XNW],4) ) * (element([TBL_Y],5)-element([TBL_Y],4))/ (element([TBL_XNW],5)-element([TBL_XNW],4) ) + element([TBL_Y],4) elseif XNW<=element([TBL_XNW],6) then (XNW - element([TBL_XNW],5) ) * (element([TBL_Y],6)-element([TBL_Y],5))/ (element([TBL_XNW],6)-element([TBL_XNW],5) ) + element([TBL_Y],5) elseif XNW<=element([TBL_XNW],7) then (XNW - element([TBL_XNW],6) ) * (element([TBL_Y],7)-element([TBL_Y],6))/ (element([TBL_XNW],7)-element([TBL_XNW],6) ) + element([TBL_Y],6) elseif XNW<=element([TBL_XNW],8) then (XNW - element([TBL_XNW],7) ) * (element([TBL_Y],8)-element([TBL_Y],7))/ (element([TBL_XNW],8)-element([TBL_XNW],7) ) + element([TBL_Y],7) else element([TBL_Y],9)1elementTBL_Y1XNWelementTBL_XNW1XNWelementTBL_XNW1elementTBL_Y2elementTBL_Y1elementTBL_XNW2elementTBL_XNW1elementTBL_Y1XNWelementTBL_XNW2XNWelementTBL_XNW2elementTBL_Y3elementTBL_Y2elementTBL_XNW3elementTBL_XNW2elementTBL_Y2XNWelementTBL_XNW3XNWelementTBL_XNW3elementTBL_Y4elementTBL_Y3elementTBL_XNW4elementTBL_XNW3elementTBL_Y3XNWelementTBL_XNW4XNWelementTBL_XNW4elementTBL_Y5elementTBL_Y4elementTBL_XNW5elementTBL_XNW4elementTBL_Y4XNWelementTBL_XNW5XNWelementTBL_XNW5elementTBL_Y6elementTBL_Y5elementTBL_XNW6elementTBL_XNW5elementTBL_Y5XNWelementTBL_XNW6XNWelementTBL_XNW6elementTBL_Y7elementTBL_Y6elementTBL_XNW7elementTBL_XNW6elementTBL_Y6XNWelementTBL_XNW7XNWelementTBL_XNW7elementTBL_Y8elementTBL_Y7elementTBL_XNW8elementTBL_XNW7elementTBL_Y7XNWelementTBL_XNW8elementTBL_Y9trueTemperature sum at anthesis (degreeC*day)TSUMANfile1110int1110truefn96FSO/Fsum1FSOFsumtrueFraction of dry matter allocated to the roots (normalised) (dimensionless)FRT1truefn97FRT/Fsum1FRTFsumtrueFsumtruefn98FST+FSO+FRT+FLV1FSTFSOFRTFLVtrueTotal dry weight of leaves, green and dead (g m-2)WLVtruefn1WLVG+WLVD1WLVGWLVDtruefn63FLV*GTOTAL1FLVGTOTALtrueExtinction coefficient for photosynthetically active Extinction coefficient for photosynthetically active radiation (dimensionless)Kfile0.610.6trueCritical LAI beyond which leaves die due to self-shading (m2/m2)LAICRfile4.014.0trueMaximum relative death rate of leaves due to shading (day-1)RDRSHMfile0.0310.03truefn871.011.0trueInitial dry weight of green leaves (at crop emergence) (g m-2)WLVItruefn89LAII/SLA1LAIISLAtrueFraction of dry matter allocated to the leaves (normalised) (dimensionless)FLV1truefn94FLV/Fsum1FLVFsumtrueFraction of dry matter allocated to the stems (normalised) (dimensionless)FST1truefn95FST/Fsum1FSTFsumtrueFraction of dry matter allocated to the storage organs (normalised) (dimensionless)FSO1trueFRDRDV_DAVTMPfilemakearray(1,9)arrayint9makearray19trueFRDRDV_RDRDVfilemakearray(1,9)array19makearray19if XNW<110 then 0.5 else 0.670400117211131 -0.00165731677076904*XNW +1.6257778544886223*10^-6*XNW^2 -7.305053028227257*10^-10*XNW^3 +1.2098204424148753*10^-13*XNW^4 Simile version 1 in use min(0.5,0.5*exp(0.003*(TSUM-110)))trueFraction of dry matter allocated to the roots (dimensionless)FRTtruefn781elementTBL_Y1XNWelementTBL_XNW1XNWelementTBL_XNW1elementTBL_Y2elementTBL_Y1elementTBL_XNW2elementTBL_XNW1elementTBL_Y1XNWelementTBL_XNW2XNWelementTBL_XNW2elementTBL_Y3elementTBL_Y2elementTBL_XNW3elementTBL_XNW2elementTBL_Y2XNWelementTBL_XNW3XNWelementTBL_XNW3elementTBL_Y4elementTBL_Y3elementTBL_XNW4elementTBL_XNW3elementTBL_Y3XNWelementTBL_XNW4XNWelementTBL_XNW4elementTBL_Y5elementTBL_Y4elementTBL_XNW5elementTBL_XNW4elementTBL_Y4XNWelementTBL_XNW5XNWelementTBL_XNW5elementTBL_Y6elementTBL_Y5elementTBL_XNW6elementTBL_XNW5elementTBL_Y5XNWelementTBL_XNW6XNWelementTBL_XNW6elementTBL_Y7elementTBL_Y6elementTBL_XNW7elementTBL_XNW6elementTBL_Y6XNWelementTBL_XNW7XNWelementTBL_XNW7elementTBL_Y8elementTBL_Y7elementTBL_XNW8elementTBL_XNW7elementTBL_Y7XNWelementTBL_XNW8elementTBL_Y9trueBase temperature (degreeC)TBASEfile0.010.0trueInitial leaf area index (at crop emergence) (m2/m2)LAIIfile0.01210.012trueSpecific leaf area (m2 g-1)SLAfile0.02210.022trueRelative growth rate of LAI during exponential growth (degreeC-1 day-1)RGRLfile0.00910.009trueDaynumber at crop emergence (day)DOYEMfile32int32trueTime step of integration (day)DELTi115truei131nonein_hierarchyRDD1i116truei132nonein_hierarchyTMMN1truei133nonein_hierarchyTMMXNW1i117i118from v1 if TSUM<330 and LAI<0.75 then LAI*(exp(RGRL*DTEFF*DELT)-1)/DELT elseif time()>=DOYEM and LAI==0 then LAII/DELT elseif time()<DOYEM then 0 else SLA*GLVtrueGrowth rate of leaf area index (m2 m-2 day-1)GLAIi119truei185nonein_hierarchyLAI1trueDeath rate of leaf area index (m2 m-2 day-1)DLAIi120truei123nonein_hierarchyLAI1truei122nonein_hierarchyRDR1i121truei126nonein_hierarchyRDRDV1truei194nonein_hierarchyXNW1i124truei127nonein_hierarchyRDRSH1i125truei197nonein_hierarchyLAI1truei130nonein_hierarchyTSUM1truei187nonein_hierarchyTSUM1i128trueRate of increase of the temperature sum (degreeC day day-1)RTSUMi129truei135nonein_hierarchyEMERGinttruei136nonein_hierarchyDTEFF1truei188nonein_hierarchyDTEFF1truei216nonein_hierarchyDAVTMP1i134truei213nonein_hierarchyTSUM1i137truei144nonein_hierarchyDTR1truei145nonein_hierarchyLAI1i138i140truei146nonein_hierarchyLUE1truei147nonein_hierarchyPARINT1truei183nonein_hierarchyGLV1i150trueDeath rate of leaves (g m-2 day-1)DLVi151i152i153i154trueGrowth in dry weight of leaves (g m-2 day-1)grWLVGtruei158nonein_hierarchyGTOTAL1i155i159truei172nonein_hierarchyRDR1truei173nonein_hierarchyWLVG1trueGrowth in dry weight of stems (g m-2 day-1)grWSTi160truei166nonein_hierarchyGTOTAL1trueGrowth in dry weight of storage organs (g m-2 day-1)grWSOi161truei167nonein_hierarchyGTOTAL1trueGrowth in dry weight of roots (g m-2 day-1)grWRTi162truei168nonein_hierarchyGTOTAL1truei302nonein_hierarchy[TBL_Y]array19truei102nonein_hierarchy[TBL_XNW]arrayint9i163truei211nonein_hierarchyXNW1i164truei234nonein_hierarchyXNW1truei403nonein_hierarchy[TBL_XNW]arrayint9truei404nonein_hierarchy[TBL_Y]array19truei192nonein_hierarchyTSUMANinti227nonein_hierarchyFSO1truei243nonein_hierarchyFRT11i224truei238nonein_hierarchyFsum1truei239nonein_hierarchyFsum1i229truei231nonein_hierarchyFST1i232nonein_hierarchyFSO1truei235nonein_hierarchyFLV1i1truei2nonein_hierarchyWLVG1truei3nonein_hierarchyWLVD1truei143nonein_hierarchyGTOTAL1i141truei142nonein_hierarchyFLV1truei149nonein_hierarchyK1truei198nonein_hierarchyLAICR1truei196nonein_hierarchyRDRSHM1truei200nonein_hierarchyWLVI1i199truei240nonein_hierarchyFLV11i221truei225nonein_hierarchyFLV1truei236nonein_hierarchyFsum1truei241nonein_hierarchyFST11i222truei226nonein_hierarchyFST1truei237nonein_hierarchyFsum1truei242nonein_hierarchyFSO11i223truei301nonein_hierarchy[TBL_XNW]arrayint9truei502nonein_hierarchy[TBL_Y]array19truei228nonein_hierarchyFRT1truei233nonein_hierarchyFRT1truei101nonein_hierarchy[TBL_XNW]arrayint9i165truei214nonein_hierarchyXNW1truei402nonein_hierarchy[TBL_Y]array19truei217nonein_hierarchyTBASE1truei191nonein_hierarchyLAII1truei202nonein_hierarchyLAII1truei182nonein_hierarchySLA1truei201nonein_hierarchySLA1truei186nonein_hierarchyRGRL1truei184nonein_hierarchyDOYEMinttruei215nonein_hierarchyDOYEMinttruei190nonein_hierarchyDELT1i189